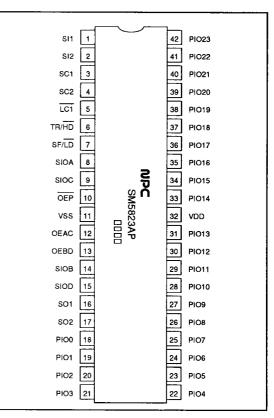


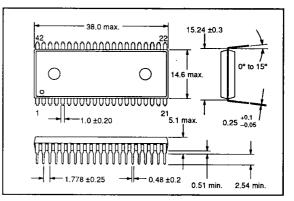
SM5823AP High-speed, 24-bit SIPO/PISO Converter

OVERVIEW


The SM5823AP is a high-speed, 24-bit serial-toparallel converter and parallel-to-serial converter fabricated in Molygate [®] CMOS.

The SM5823AP features a mode selection scheme that allows it to operate as 8-, 16- or 24-bit converters (SIPO and PISO). It also features TTL-compatible, buffered input/outputs for easy bus interfacing, 30 MHz maximum operating frequency and low power consumption, making it ideal for digital video and audio signal processing applications.

FEATURES


- Functions
 - 8/16/24-bit serial-to-parallel converter and parallel-to-serial converter
 - 30 MHz maximum operating frequency
 - 24-bit parallel I/O, general-purpose port bus interface
 - Extendable to lengths greater than 24 bits for both SIPO and PISO conversion
 - TTL-compatible input/outputs
 - 5 ±0.5 V supply
 - 42-pin shrink DIP
- Component blocks
 - Three 8-bit SIPO registers
 - Three 8-bit parallel output registers
 - Three 8-bit parallel input latches
 - Three 8-bit PISO registers
 - One 24-bit parallel input/output

PINOUT

PACKAGE DIMENSIONS

Unit: mm

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O	Description
1	SI1	1	SIPO serial data 1
2	SI2		PISO serial data 1
3	SC1	1	SIPO shift clock (rising-edge trigger)
4	SC2		PISO shift clock (rising-edge trigger)
5	<u>LC1</u>	I	SIPO data latch clock (falling-edge trigger)
6	TR/HD	I	PISO data latch clock. Transparent when HIGH and hold when LOW
7	SF/LD	. I	PISO shift/load control signal. Shift when HIGH and load when LOW
8	SIOA	1/0	SIPO serial output 1 and SIPO serial input 2
9	SIOC	1/0	PISO serial output 1 and PISO serial input 2
10	OEP	I	Parallel output enable signal. Enable when LOW and disable when HIGH
11	VSS		Ground

SM5823AP

Number	Name	٧O	Description
12	ÖEAC	1	SIOA and SIOC serial output enable signal. Enable when LOW and disable when HIGH
13	OEBD		SIOB and SIOD serial output enable signal. Enable when LOW and disable when HIGH
14	SIOB	I/O	SIPO serial output 2 and SIPO serial input 3
15	SIOD	1/0	PISO serial output 2 and PISO serial input 3
16	SO1	0	SIPO serial output 3
17	SO2	0	PISO serial output 3
18 to 31	PIO0 to PIO13	1/0	Parallel input/outputs
32	VDD		5 ±0.5 V supply
33 to 42	PIO14 to PIO23	I/O	Parallel input/outputs

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{ss} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.3 to 7.0	v
Input voltage range	V _{IN}	-0.3 to V _{DD} +0.3	v
Power dissipation	PD	500	mW
Storage temperature range	T _{stg}	-40 to 125	deg. C
Soldering temperature	T _{sld}	255	deg. C
Soldering time	t _{sld}	10	s

Recommended Operating Conditions

 $V_{ss} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	4.5 to 5.5	V
Operating temperature range	Т _{орг}	20 to 70	deg. C

DC Electrical Characteristics

 V_{DD} = 4.5 to 5.5 V, T_a = -20 to 70 deg. C, V_{SS} = 0 V unless otherwise noted

Parameter	Symbol	Condition		- Unit		
Falanielei	Symbol		min	typ	max	Ona
Standby current consumption	ls	$V_{IN} = V_{DD}$ or 0 V		-	1.0	μΑ
Operating current consumption	IDD	$V_{DD} = 5 V$, f = 30 MHz, all outputs open	_	-	20	mA
HIGH-level input voltage	VIH	See notes 1 and 2.	2.4	_	~	v
LOW-level input voltage	ViL	See notes 1 and 2.	-	-	0.5	V
HIGH-level output voltage	V _{OH}	$I_{OH} = -1.0$ mA. See notes 2 and 3.	2.5	-	_	v

NIPPON PRECISION CIRCUITS-3

Parameter	Symbol	Condition		Rating			Unit
Falameter	Symbol Condition		min typ		max		
	V _{OL1}	See notes	l _{OL} = 4.0 mA	-	-	0.4	v
LOW-level output voltage	V _{OL2} 2	2 and 3.	loL = 16.0 mA	-	-	0.8	
HIGH-level input current	l _{IH}	$V_{IN} = V_{DD}$.	See note 1.	_	_	1.0	μΑ
LOW-level input current	I _{IL}	$V_{iN} = 0 V.$	See note 1.	-	10	20	μA
High-impedance output HIGH-level leakage current	I _{ZH}	$V_{\overline{OEP}} = V_{\overline{OE}}$ VIH, VOUT = See note 2.		-	-	5.0	μА
HIGH-impedance output LOW-level leakage current	I _{ZL}	VOEP = VOE VIH, VOUT = See note 2.		-	_	5.0	μA

Notes

1. Pins SI1, SI2, SC1, SC2, IC1, TR/HD, SF/ID, OEP, OEAC and OEBD are TTL-level inputs with pull-up resistances.

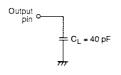
2. Pins SIOA, SIOB, SIOC, SIOD and PIO0 to PIO23 are TTL-level input/outputs.

3. Pins SO1 and SO2 are TTL-level outputs.

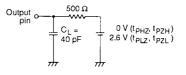
AC Electrical characteristics

 V_{DD} = 4.5 to 5.5 V, T_a = -20 to 70 deg. C, V_{SS} = 0 V unless otherwise noted

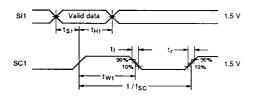
Parameter	Symbol	Condition		Rating		Unit
rdiameter	Symbol	Condition	min	typ	max	Unit
SC1 and SC2 shift clock frequency	fsc	50% duty. See figures 1 and 2.	0	-	30	MHz
SI1 to SC1 setup time	ts1	Can firme 1	15	_	-	ns
SI1 to SC1 hold time	tH1	See figure 1.	0	-	-	ns
SI2 to SC2 setup time	ts2	0	20	-	-	ns
SI2 to SC2 hold time	t _{H2}	See figure 2.	0	_	-	ns
SC1 to LC1 setup time	t _{S3A}	See figure 3.	15	_	_	ns
Sol to col setup time	ts3B		5	-	-	
SF/LD to SC2 setup time	ts4		15	_		ns
SF/LD to SC2 hold time	t _{H4}	See figure 4.	0	-	-	ns
SIOA, SIOB to SC1 setup time	tss	Can have 5	20	-	-	ns
SIOA, SIOB to SC1 hold time	t _{H5}	See figure 5.	0	-	-	ns
SIOC, SIOD to SC2 setup time	t _{S6}	0	20	-	_	ns
SIOC, SIOD to SC2 hold time	t _{H6}	See figure 6.	0	-	_	ns
PIOn to SC2 setup time	ts7	$V_{TR/\overline{HD}} = V_{1H}$	30		-	ns
PIOn to SC2 hold time	tH7	See figure 7.	0		-	ns
PIOn to TR/HD setup time	tsa		20	-		ns
PIOn to TR/HD hold time	t _{H8}	- See figure 8.	0	-		ns
SC1 and SC2 pulsewidth	tw1	See figures 1 and 2.	15	-	~	ns
LC1 pulsewidth	tw2	See figure 3.	20	-	-	ns

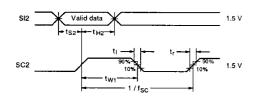

NIPPON PRECISION CIRCUITS-4

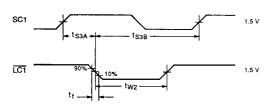
SM5823AP

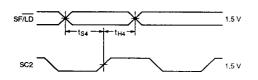

Parameter		O dition		Rating		
raiameter	Symbol	Condition	min	typ	max	Unit
TR/HD pulsewidth	tw3	See figure 8.	20	-	-	ns
OEP pulsewidth	tw4	See figure 14.	40	-	-	ns
OEAC and OEBD pulsewidth	tws	See figure 15.	40	-	-	ns
Clock rise time	tr		-	_	100	ns
Clock fall time	t _f	- See figures 1 and 2.	-	-	100	ns
PIO0 to PIO23 output propagation	tPLH1	See note 1.	-	-	60	
delay time	tPHL1	See figure 9.	_	-	60	ns
SIOA and SIOB output propagation	tPLH2	See note 1.	_	-	40	
delay time	tPHL2	See figure 10.	-	-	40	ns
SIOC and SIOD output propagation delay time	tPLH3	See note 1. See figure 11.	-	_	40	
	tPHL3		-	_	40	ns
SO1 output propagation datau time	tPLH4	See note 1. See figure 12.	_		35	
SO1 output propagation delay time	tPHL4		_	-	35	ns
SO2 output propagation dolou time	tPLH5	See note 1. See figure 13.	-	-	35	
SO2 output propagation delay time	tPHL5		_	_	35	ns
PIO0 to PIO23 enable propagation	tPZL1	See note 2.	_	_	50	
delay time	tpzh1	See figure 14.	_	-	50	ns
PIO0 to PIO23 disable propagation	tPLZ1	See note 2.	-	_	50	
delay time	tphz1	See figure 14.	-	_	50	ns
SIOA to SIOD enable propagation	tpzl2	See note 2.	-	_	40	
delay time	tpzH2	See figure 15.	_	-	40	ns
SIOA to SIOD disable propagation	tPLZ2	See note 2.	-		40	1
delay time	tPHZ2	See figure 15.	_	-	40	ns
Input capacitance	C _{in}	f = 1 MHz	-	-	10	ρF
Input/output capacitance	Cio	$f = 1 MHz, V \overline{OEP} = V \overline{OEAC} = V \overline{OEBD} = V_{IH}$	-	-	20	pF

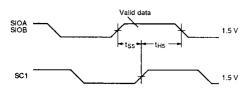
Notes

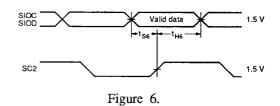

1. Measurement circuit 1


2. Measurement circuit 2


Timing Characteristics







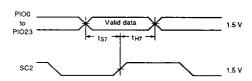


Figure 7.

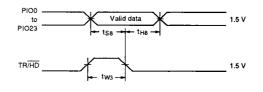
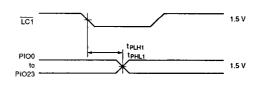
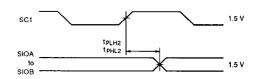
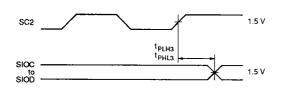
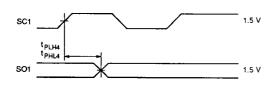
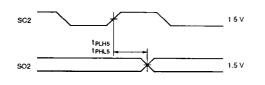
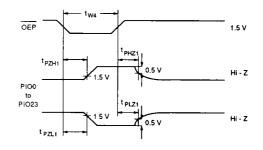
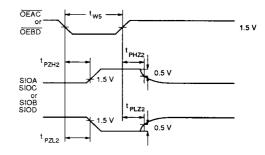



Figure 8.


Figure 10.





SM5823AP

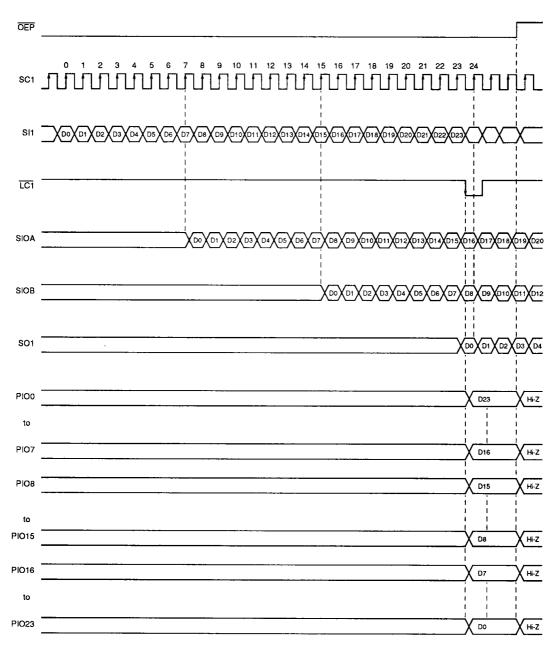
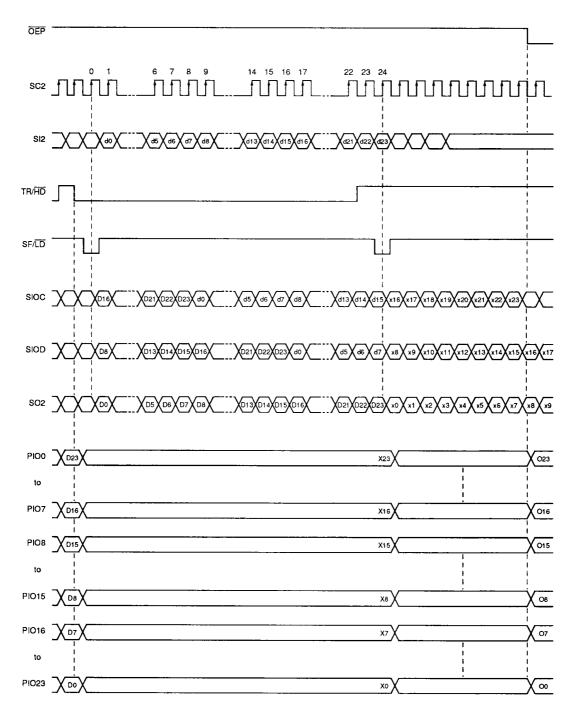



Figure 16. 24-bit SIPO (\overline{OEAC} = LOW, \overline{OEBD} = LOW)

J

I

FUNCTIONAL DESCRIPTION

Serial-to-parallel Converter Mode (OEP = LOW)

In this mode, the levels on OEAC and OEBD define a further four sub-modes. These sub-modes determine the configuration of three 8-bit shift registers making up the serial-to-parallel converter.

Mode name	OEAC	OEBD	Function
SPM1	LOW	LOW	1 $ imes$ (24-bit serial $ ightarrow$ 24-bit parallel)
SPM2	LOW	HIGH	$1 \times (16\text{-bit serial} \rightarrow 16\text{-bit parallel})$ AND $1 \times (8\text{-bit serial} \rightarrow 8\text{-bit parallel})$
SPM3	HIGH	LOW	$1 \times (8$ -bit serial $\rightarrow 8$ -bit parallel) AND $1 \times (16$ -bit serial $\rightarrow 16$ -bit parallel)
SPM4	HIGH	HIGH	$3 imes$ (8-bit serial \rightarrow 8-bit parallel)

The mode selected determines which input(s) of SI1, SIOA and SIOB will function as a serial data input. Data is shifted on the rising edge of SC1.

The shift register (SIPO) output data from each SIPO is latched into general-purpose registers in 8-bit units on the falling edge of the data latch clock, $\overline{LC1}$.

Data is output on consecutive outputs from PIO0 up to PIO23, depending on the mode selected.

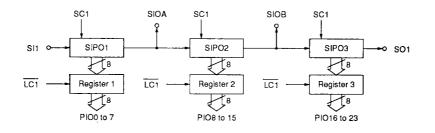
Parallel-to-serial Converter Mode (OEP = HIGH)

In this mode, the levels on \overline{OEAC} and \overline{OEBD} define a further four sub-modes. These sub-modes determine the configuration of three 8-bit shift registers making up the parallel-to-serial converter.

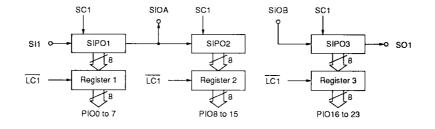
Mode name	OEAC	OEBD	Function
PSM1	LOW	LOW	$1 \times (24$ -bit parallel $\rightarrow 24$ -bit serial) OR $3 \times (8$ -bit parallel $\rightarrow 8$ -bit serial)
PSM2	LOW	HIGH	2 $ imes$ (8-bit parallel $ ightarrow$ 8-bit serial)
PSM3	HIGH	LOW	1×16 -bit parallel $\rightarrow 16$ -bit serial) OR 2 \times (8-bit parallel $\rightarrow 8$ -bit serial)
PSM4	HIGH	HIGH	$1 \times (8$ -bit parallel $\rightarrow 8$ -bit serial)

The parallel input data is input on consecutive inputs from PIO0 up to PIO23, depending on the mode selected.

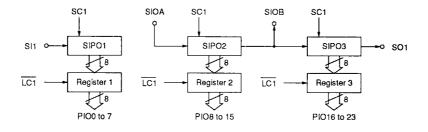
Input parallel data is passed directly to the PISO shift registers when TR/\overline{HD} is HIGH (transparent mode). The input data is latched when TR/\overline{HD} goes LOW.

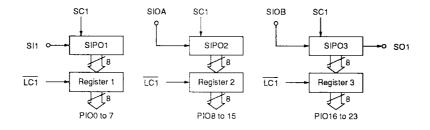

Data is loaded into the PISO registers when SF/LD goes LOW, and shifting is enabled when SF/LD goes HIGH. Data is shifted in three 8-bit units on the rising edge of the data shift clock, SC2.

The mode selected determines which output(s) of SO2, SIOC and SIOD will function as a serial output.

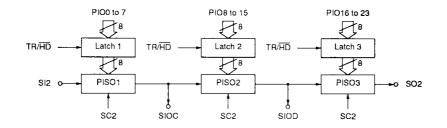

Mode Selection

Serial-to-parallel converter mode ($\overline{OEP} = LOW$)

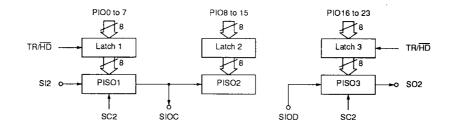

SPM1 (\overline{OEAC} = LOW, \overline{OEBD} = LOW)


SPM2 (\overline{OEAC} = LOW, \overline{OEBD} = HIGH)

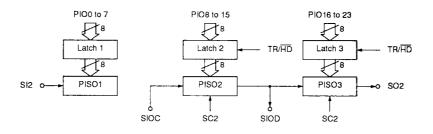
SPM3 (\overline{OEAC} = HIGH, \overline{OEBD} = LOW)

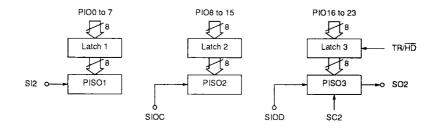


SPM4 (\overline{OEAC} = HIGH, \overline{OEBD} = HIGH)

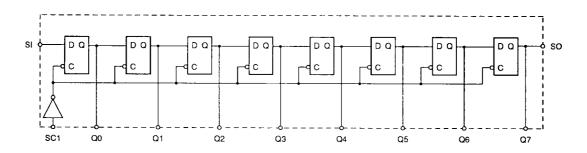


Parallel-to-serial converter mode (OEP = HIGH)

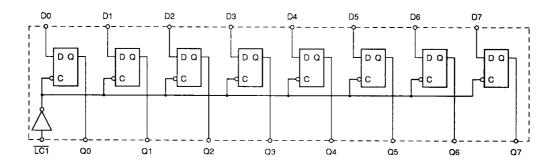

PSM1 (\overline{OEAC} = LOW, \overline{OEBD} = LOW)


PSM2 (\overline{OEAC} = LOW, \overline{OEBD} = HIGH)

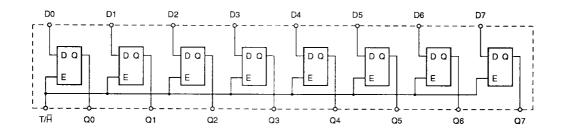
PSM3 (\overline{OEAC} = HIGH, \overline{OEBD} = LOW)

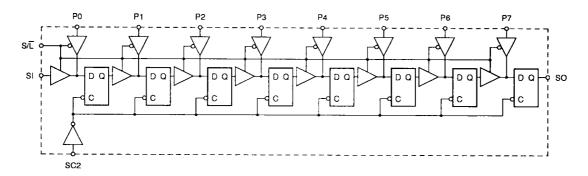


PSM4 (\overline{OEAC} = HIGH, \overline{OEBD} = HIGH)



Equivalent Circuits


8-bit SIPO


8-bit register

8-bit latch

8-bit PISO

NIPPON PRECISION CIRCUITS LTD. reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Ltd. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Ltd. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

NIPPON PRECISION CIRCUITS LTD.

3-9, Taihei 4-chome Sumida-ku, Tokyo 130, Japan Telephone: 03-5608-5571 Facsimile: 03-5608-5566

NC890/8E1993.10