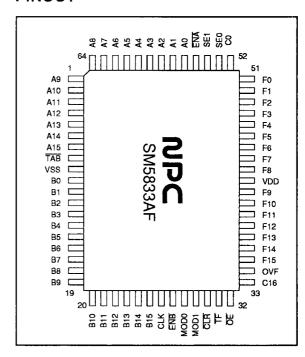
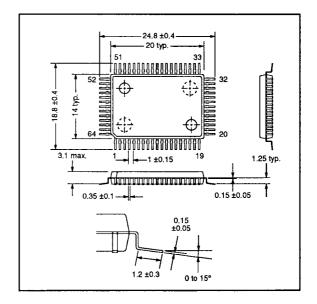


OVERVIEW

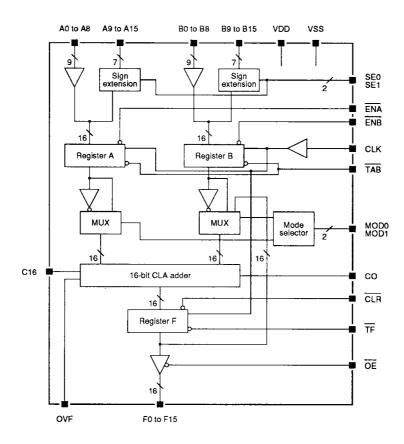

The SM5833AF is a 16-bit adder fabricated in Molybdenum-gate CMOS. It performs addition, subtraction and accumulation of 2s-complement data at a maximum operating speed of 25 MHz. It features input and output registers that can be programmed independently for transparent operation.

The SM5833AF can be employed as the input/output adder in a video-bandwidth digital filter, enabling two-dimensional filtering and other highspeed signal processing.

FEATURES


- 16-bit 2s-complement input/output data
- Comprises
 - 16-bit CLA adder
 - 1 \times 16-bit parallel output register
 - 2 × 16-bit parallel input registers
- 25 MHz maximum operating frequency (register mode only)
- Adder, subtractor and accumulator operating modes
- Overflow detected flag
- Input data sign bit extension
- Input/output register transparent operation
- Two SM5833AFs can be cascaded to form a 32-bit adder.
- TTL-compatible input/output levels
- Molybdenum-gate CMOS process
- Single 5 V supply
- 64-pin flat plastic package

PINOUT



PACKAGE DIMENSIONS

Unit: mm

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	1/0	Description
1	A9	iρ	Input A (bit 9)
2	A10	ip	Input A (bit 10)
3	A11	ip	Input A (bit 11)
. 4	A12	ip	Input A (bit 12)
5	A13	ip	Input A (bit 13)
6	A14	ip	Input A (bit 14)
7	A15	ip	Input A (MSB)
8	TAB	ip	Register A and B transparent-mode select
9	VSS		Ground
10	BO	ip	Input B (LSB)
11	B1	ip	Input B (bit 1)
12	B2	ip	Input B (bit 2)
13	В3	ip	Input B (bit 3)
14	B4	ip	Input B (bit 4)
15	B5	ip	Input B (bit 5)
16	B6	ip	Input B (bit 6)

SM5833AF

Number	Name	1/0	Description
17	B7	ip	Input B (bit 7)
18	B8	ip	Input B (bit 8)
19	B9	ip	Input B (bit 9)
20	B10	ip	Input B (bit 10)
21	B11	ip	Input B (bit 11)
22	B12	ip	Input B (bit 12)
23	B13	ip	Input B (bit 13)
24	B14	ip	Input B (bit 14)
25	B15	ip	Input B (MSB)
26	CLK	i	Clock input (rising-edge trigger)
27	ENB	ip	Register B enable
28	MOD0	ip	Made colors size
29	MOD1	ip	Mode select pins
30	CLR	ip	Output register clear
31	TF	ip	Output register transparent-mode select
32	ŌĒ	ip	Output enable
33	C16	0	Carry output
34	OVF	0	Overflow detected flag
35	F15	0	Sum operation output (MSB)
36	F14	0	Sum operation output (bit 14)
37	F13	0	Sum operation output (bit 13)
38	F12	0	Sum operation output (bit 12)
39	F11	0	Sum operation output (bit 11)
40	F10	0	Sum operation output (bit 10)
41	F9	0	Sum operation output (bit 9)
42	VDD		Supply voltage
43	F8	0	Sum operation output (bit 8)
44	F7	0	Sum operation output (bit 7)
45	F6	0	Sum operation output (bit 6)
46	F5	0	Sum operation output (bit 5)
47	F4	0	Sum operation output (bit 4)
48	F3	0	Sum operation output (bit 3)
49	F2	0	Sum operation output (bit 2)
50	F1	0	Sum operation output (bit 1)
51	F0	0	Sum operation output (LSB)
52	CO	i	Carry input
53	SE0	ip	
54	SE1	ip	Sign extension bit select pins

Number	Name	VO	Description
55	ENA	ip	Register A enable
56	A0	ip	Input A (LSB)
57	A1	ip	Input A (bit 1)
58	A2	ip	Input A (bit 2)
59	A3	ip	Input A (bit 3)
60	A4	ip	Input A (bit 4)
61	A 5	ip	Input A (bit 5)
62	A 6	ip	Input A (bit 6)
63	A 7	ip	Input A (bit 7)
64	A 8	ip	Input A (bit 8)

Note

i = input pin, ip = input pin with pull-up resistance, o = output pin

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{ss} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-3.0 to 7.0	٧
Input voltage range	V _{IN}	-0.3 to $V_{DD} + 0.3$	٧
Power dissipation	P _D	250	mW
Storage temperature range	T _{stg}	-40 to 125	deg. C
Soldering temperature	Tsld	255	deg. C
Soldering time	tsid	10	s

Recommended Operating Conditions

 $V_{ss} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	4.75 to 5.25	٧
Operating temperature range	Торг	-20 to 70	deg. C

DC Electrical Characteristics

 V_{DD} = 4.75 to 5.25 V, T_a = -20 to 70 deg. C, V_{SS} = 0 V

Parameter	Symbol	Condition		Unit		
			min	typ	max	Oint
Standby supply current	ls	V _{IN} = V _{DD} or 0 V	_	1.0	10.0	μΑ
Operating supply current	loo	V _{DD} = 5 V, f = 25 MHz, all outputs open	_	30	60	mA.
HIGH-level input voltage	V _{IH}	0 4 4 0	2.4	-	-	٧
LOW-level input voltage	V _{IL}	See notes 1 and 2.	_	-	0.5	٧

Parameter	Symbol	Condition		Rating		
	Symbol	Condition	min	typ	max	Unit
F0 to F15, C16 and OVF HIGH-level output voltage	V _{OH}	I _{OH} = -0.1 mA. See note 3.	2.5	-	-	٧
F0 to F15, C16 and OVF LOW-level output voltage	V _{OL}	loL = 4.0 mA. See note 3.	-	-	0.4	٧
LOW-level input current	I _{IL}	V _{IN} = 0 V. See note 2.	_	10	20	μΑ
HIGH-level input leakage current	Існ	V _{IN} = V _{DD} . See notes 1 and 2.		-	1.0	μΑ
LOW-level input leakage current	I _{LL}	V _{IN} = 0 V. See note 1.	-		1.0	μΑ
F0 to F15 high-impedance HIGH-level output leakage current	lzн	VOE = VIH, VOUT = VDD	_	_	5.0	μΑ
F0 to F15 high-impedance LOW-level output leakage current	lzL	$V_{\overline{OE}} = V_{IH}, V_{OUT} = 0 V$	_	_	5.0	μΑ

Notes

- 1. Pins CLK and C0 are TTL-level inputs.
- 2. Pins A0 to A15, B0 to B15, MOD0, MOD1, SE0, SE1, $\overline{\text{CLR}}$, $\overline{\text{TAB}}$, $\overline{\text{TF}}$, $\overline{\text{ENA}}$, $\overline{\text{ENB}}$ and $\overline{\text{OE}}$ are TTL-level inputs with pull-up resistances.
- 3. Pins F0 to F15, C16 and OVF are TTL-level outputs.

AC Electrical Characteristics

Standard register mode

 V_{DD} = 4.75 to 5.25 V, T_a = -20 to 70 deg. C, V_{SS} = 0 V

Parameter	Symbol	Condition	Rating			11
rarameter		Condition	min	typ	max	Unit
Clock frequency	folk	50% duty, TAB = HIGH, TF = HIGH	0	-	25	MHz
Clock pulsewidth	tw ₁	-	.15	-	-	ns
Clock rise time	t _r	See figure 1.	_	_	100	ns
Clock fall time	t _i		-	_	100	ns
A0 to A15 and B0 to B15 data setup time	tsı	TAB = HIGH.	12	_	-	ns
A0 to A15 and B0 to B15 data hold time	t _{H1}	See figure 2.	3	-	-	ns
C0 carry setup time	ts2	TF = HIGH.	22	-	-	ns
C0 carry hold time	t _{H2}	See figure 3.	0	-	_	ns
CLR clear setup time	ts3	TF = HIGH.	15	-	_	ns
CLR clear hold time	t _{H3}	See figure 4.	15	_	-	ns
ENA and ENB enable setup time	ts4	TAB = HIGH.	15	_	_	ns
ENA and ENB enable hold time	t _{H4}	See figure 5.	3	_	-	ns
MOD0 and MOD1 mode setup time	tss	TF = HIGH	100	_	_	ns
MODO and MOD1 mode hold time	t _{H5}		0	_	-	ns

Parameter	Symbol Condition	Condition		Rating		Unit
r aranneter		Condition	min	typ	max	Unit
OLK to E. data and add to the	tPLH1	TF = HIGH.	-	_	28	
CLK to Fn data output delay time	t _{PHL1}	See figure 6. See note 1.		-	28	ns
CLK to C16 carry output	tPLH2	TAB = HIGH.	-	-	50	
delay time	tPHL2	See figure 7.	_	-	50	ns
CLK to C16 carry output hold time	toH1	See note 1.	15	_	-	ns
CLK to OVF overflow output	t РLH3		_	_	56	
delay time	‡PHL3	TAB = HIGH. See figure 9.	_	-	56	ns
CLK to OVF overflow output hold time	t он2	See note 1.	15	-	-	ns
C0 to C16 carry output delay time	¹PLH4	See figure 7.	_	_	40	
to to the carry output delay time	t _{PHL4}	See note 1.	_	_	40	ns
C0 to OVF overflow output	t _{PLH5}	See figure 9.	_	-	40	
delay time	t _{PHL5}	See note 1.	_	_	40	ns
F0 to F15 output enable	t _{PZL}	See figure 13.	_	-	35	
delay time	t _{PZH}	See note 2.	_	_	35	ns
F0 to F15 output disable	†PLZ	See figure 13.	-	_	35	
delay time	t _{PHZ}	See note 2.	_	-	35	ns
OE pulsewidth	t _{W2}	See figure 13.	20	-	-	ns
Input capacitance	C _{IN}	f = 1 MHz	-	-	10	pF
Output capacitance	Cout	$f = 1 \text{ MHz}, V_{\overline{OE}} = V_{IH}$		-	20	pF

Notes

- 1. Measurement circuit 1
- 2. Measurement circuit 2
- 3. Typical values are measured at V_{DD} = 5 V and T_a = 25 deg. C.

Transparent register mode

TAB = LOW, TF = HIGH

 V_{DD} = 4.75 to 5.25 V, T_{a} = -20 to 70 deg. C, V_{SS} = 0 V

Parameter	Symbol Co	Condition	Rating			Unit
		Condition	min	typ	max	Onic
A0 to A15 and B0 to B15 data setup time	tss	Saa farra 2	42	-	-	ns
A0 to A15 and B0 to B15 data hold time	t _{H5}	See figure 2.	0	-	-	ns
CIV to F. data sutanti dalam tima	t _{PLH1}	See figure 6.	-	-	28	
CLK to Fn data output delay time	[†] PHL1	See note 1.	-	_	28	ns
CO to C16 some autout dolor time	t _{PLH4}	See figure 8.	-	-	40	
C0 to C16 carry output delay time	t _{PHL4}	See note 1.	-	-	40	ns

Parameter	Symbol	Condition	Rating			114
		Condition	min	typ	max	Unit
C0 to OVF overflow output	†PLH5	See figure 10.	_	-	40	
delay time		See note 1.	_	-	40	ns
A and B to C16 carry output	tplH6	See figure 8. See note 1.	_	-	57	
delay time	t _{PHL6}		-	-	57	ns
A and B to OVF overflow output delay time	tPLH7	See figure 10. See note 1.	-	-	63	
	¹PHL7		-	_	63	ns

Notes

- 1. Measurement circuit 1
- 2. Measurement circuit 2

$\overline{\mathsf{TAB}} = \mathsf{HIGH}, \ \overline{\mathsf{TF}} = \mathsf{LOW}$

 V_{DD} = 4.75 to 5.25 V, $T_{\text{\tiny A}}$ = -20 to 70 deg. C, V_{SS} = 0 V

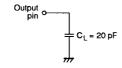
Parameter	Cumbal	Condition		Rating		11-14
Parameter	Symbol	Condition	min	typ	max	Unit
A0 to A15 and B0 to B15 data setup time	t _{S1}	Con Found 0	12	-	-	
A0 to A15 and B0 to B15 data hold time	t _{H1}	See figure 2.	3	_	_	ns
CLK to C16 carry output	tPLH2		-	-	50	
delay time	tPHL2	See figure 7. See note 1.	-	-	50	ns
CLK to C16 carry output hold time	t _{OH1}		15	-	-	ns
CLK to OVF overflow output	t _{PLH3}	See figure 9. See note 1.		-	56	ns
delay time	t _{PHL3}		_	-	56	
CLK to OVF overflow output hold time	tон2		15	_	_	ns
CO to C16 corru autout dalay time	tPLH4	See figure 7.	-	-	40	- ns
C0 to C16 carry output delay time	t _{PHL4}	See note 1.	_	-	40	
C0 to OVF overflow output	tPLH5	See figure 9.	_	-	40	ns
delay time	tPHL5	See note 1.	-	-	40	
CLK to Fn data output delay time	t _{PLH8}		_		58	ns
OLK to Fit data dutpor delay time	tPHL8	See figure 11. See note 1.	_	-	58	
CLK to Fn data output hold time	tонз		15	-	_	ns
CO to Fn data output delay time	t _{PLH9}	See figure 11.		_	48	ns
50 to the data doublit detay time	t _{PHL9}	See note 1.	-	-	48	

Notes

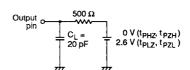
- 1. Measurement circuit 1
- 2. Measurement circuit 2

TAB = LOW, TF = LOW

 V_{DD} = 4.75 to 5.25 V, T_a = -20 to 70 deg. C, V_{SS} = 0 V


Parameter	Symbol	Condition	Rating			11-14
			min	typ	max	Unit
C0 to C16 carry output delay time	t _{PLH4}	See figure 8.	-	-	40	ns
	₹PHL4	See note 1.	-	_	40	
C0 to OVF overflow delay time	tPLH5	See figure 10.	-	-	40	ns
	t _{PHL5}	See note 1.	-	_	40	
A and B to C16 carry output	tPLH6	See figure 8. See note 1.	-	-	57	ns
delay time	tPHL6		-	-	57	
A and B to OVF overflow output delay time	t _{PLH7}	See figure 10. See note 1.	-	-	63	ns
	tPHL7		-	_	63	
C0 to Fn data output delay time	tPLH9	See figure 12. See note 1.	-	_	48	ns
	t _{PHL9}		_	-	48	
A and B to Fn data output delay time	t _{PLH10}	See figure 12. See note 1.	-	_	60	ns
	t _{PHL10}		-	-	60	

Notes


- 1. Measurement circuit 1
- 2. Measurement circuit 2

Measurement Circuits

Measurement circuit 1

Measurement circuit 2

Timing Diagrams

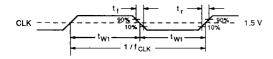


Figure 1. CLK input waveform



Figure 2. A and B data input timing

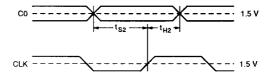


Figure 3. Carry input timing

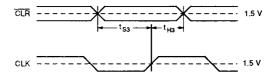


Figure 4. Clear input timing

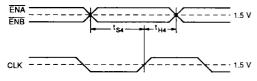


Figure 5. Enable input timing

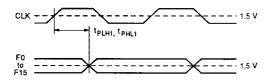


Figure 6. Output data timing $(\overline{TF} = HIGH)$

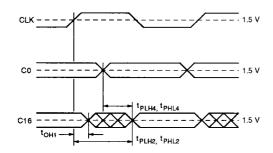


Figure 7. Carry output timing $(\overline{TAB} = HIGH)$

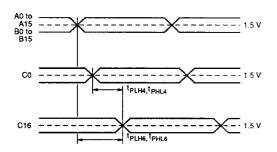


Figure 8. Carry output timing $(\overline{TAB} = LOW)$

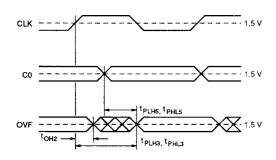


Figure 9. Overflow output timing ($\overline{TAB} = HIGH$)

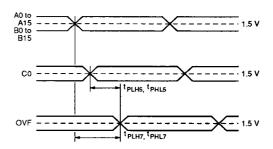


Figure 10. Overflow output timing ($\overline{TAB} = LOW$)

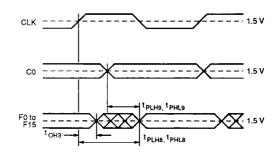


Figure 11. Output data timing ($\overline{TAB} = HIGH$, $\overline{TF} = LOW$)

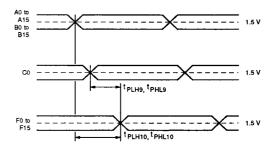


Figure 12. Output data timing ($\overline{TAB} = LOW$), $\overline{TF} = LOW$)

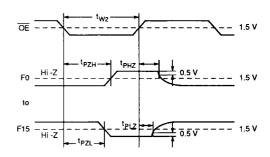


Figure 13. Output enable control timing

FUNCTIONAL DESCRIPTION

Operating Mode Selection (MOD0, MOD1, C0)

MOD0 and MOD1 select the operating mode as shown in the following table. These pins have internal pull-up resistances, and adder mode is selected if they are left open.

The C0 input on the LSB end needs to be switched to correspond to the selected operating mode. C0 must be LOW for adder mode, and HIGH for subtraction mode.

MOD0	MOD1	C0 (See note)	Operating mode
HIGH	HIGH	LOW	$A + B \rightarrow F$
HIGH	LOW	HIGH	$A - B \rightarrow F$
LOW	HIGH	HIGH	–A + B → F
LOW	LOW	LOW	A + F → F

Note

For cascade connections, this is the input level on C0 pin on the lowest device in the cascade (LSB end).

Cascade Connection (C16, C0)

A 32-bit adder can be configured using two SM5833AFs by connecting the carry output C16 of the lower 16-bit adder to the carry input C0 of the upper 16-bit adder. Note that because the 32-bit adder operates as a ripple-carry adder, operating speed is reduced.

Overflow Detect (OVF)

OVF goes HIGH when an arithmetic overflow is detected. It is driven directly from the CLA adder and is not latched. Note must be taken of the clock rate and OVF output delay when interfacing circuitry to this pin.

Sign Extension (SE0, SE1)

Input data words shorter than 16 bits can be used by the SM5833AF by setting the SE0 and SE1 control pins as shown in the following table. Word lengths of 10, 12, 14 and 16 bits can be selected; the most-significant bit of the selected word length is sign-extended to 16 bits. Note that both inputs must have the same input word length.

SE0 and SE1 have internal pull-up resistances, so 16-bit input words are selected if they are left open.

SE0	SE1		fore sign nsion	Input data	
		Input A	Input B	length	
LOW	LOW	A 9	B9	10 bits	
HIGH	LOW	A11	B11	12 bits	
LOW	HIGH	A13	B13	14 bits	
HIGH	HIGH	A15	B15	16 bits	

Register Control

Transparent mode (TAB, TF)

Input registers A and B and output register F support a transparent mode of operation. Note that after selecting transparent mode, the previous register contents are corrupted.

TAB	Input registers A and B
HIGH	Register mode
LOW	Transparent mode
TF	Input register F

TF	Input register F
HIGH	Register mode
LOW	Transparent mode

Input register enable control (ENA, ENB)

ENA and ENB function as the latch clock enables for input registers A and B, respectively. Neither register can be updated while it is in the disabled state; they maintain the previously-latched data. Accordingly, these control signals allow data input to both registers from a single bus.

ENA	Input register A
HIGH	Disable
LOW	Enable

ENB	Input register B
HIGH	Disable
LOW	Enable

Tristate output enable control (OE)

OE controls the output tristate buffers. This allows inputs and outputs to be connected to a single data bus.

ŌĒ	Output operation
HIGH	High impedance
LOW	Output

Output register clear (CLR)

Output register F is cleared by setting $\overline{\text{CLR}}$ LOW. In accumulator mode, this function must be used to initialize the output register before starting an accumulation.

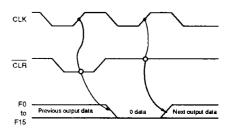


Figure 14. Clear operation timing

NIPPON PRECISION CIRCUITS LTD. reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Ltd. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Ltd. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

NIPPON PRECISION CIRCUITS LTD.

3-9, Taihei 4-chome Sumida-ku, Tokyo 130, Japan Telephone: 03-5608-5571 Facsimile: 03-5608-5566

NC8915AE 1993.11