

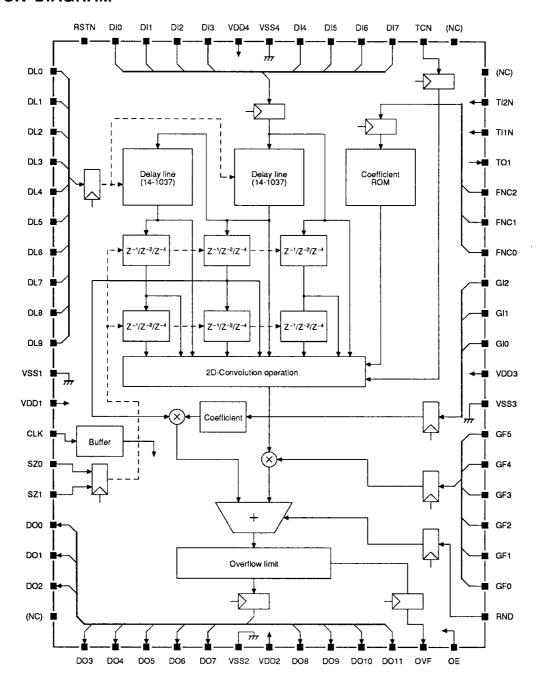
OVERVIEW

The SM5835AF is a two-dimensional digital filter for non-interlaced 8-bit images. It processes a 33-pixel image segment at the video data rate. It includes two horizontal line delays, for lines from 14 to 1037 pixels long, and filtering coefficients in ROM for averaging, Laplacian and two other types of filtering. These features allow any frame size to be processed without any need for external memory.

Other features include decimation registers to change filter characteristics, and independent gain settings for the filtered and unfiltered signal components. The net result is a flexible, high-performance two-dimensional filter IC.

FEATURES

- 3 × 3-pixel two-dimensional filter
- Video signal rates up to 14.5 MHz
- 8-bit data input, selectable for unsigned magnitude or 2s-complement format
- 12-bit 2s-complement data output
- Two-line delay, variable in length from 14 to 1037 pixels
- Coefficients stored in internal ROM for twodimensional averaging, Laplacian, and two other filters
- Decimation registers to vary filter characteristics
- Independent gain settings for filtered and unfiltered signal components
- Overflow limiting and overflow detection flag output
- Optional rounding for 8-bit output
- TTL-compatible input/output levels
- · Tristate data outputs
- Single 5 V supply
- Moly-gate® CMOS process
- 64-pin QFP package


APPLICATIONS

- · Image processing for copying machines
- · Video signal processing

PINOUT

BLOCK DIAGRAM

PIN DESCIPTION

Pin number	Pin name	1/0	Description
1	DLO	ip	Delay line length select (lsb)
2	DL1	ip	Delay line length select (bit 1)
3	DL2	ip	Delay line length select (bit 2)
4	DL3	ip	Delay line length select (bit 3)
5	DL4	ip	Delay line length select (bit 4)
6	DL5	ip	Delay line length select (bit 5)
7	DL6	ip	Delay line length select (bit 6)

SM5835AF

Pin number	Pin name	I/O	Description
8	DL7	ip	Delay line length select (bit 7)
9	DL8	ip	Delay line length select (bit 8)
10	DL9	ip	Delay line length select (msb)
11	VSS1		Ground pin 1
12	VDD1		5 V supply pin 1
13	CLK	i	Clock input
14	SZ0	ip	Decimation setting pin 0
15	SZ1	ip	Decimation setting pin 1
16	DO0	0	Data output (lsb)
17	DO1	0	Data output (bit 1)
18	DO2	0	Data output (bit 2)
19	(NC)		No connection
20	DO3	0	Data output (bit 3)
21	DO4	0	Data output (bit 4)
22	DO5	0	Data output (bit 5)
23	DO6	. 0	Data output (bit 6)
24	DO7	0	Data output (bit 7)
25	VSS2		Ground pin 2
26	VDD2		5 V supply pin 2
27	DO8	. 0	Output data (bit 8)
28	DO9	0	Output data (bit 9)
29	DO10	0	Output data (bit 10)
30	DO11	0	Output data (msb)
31	OVF	0	Overflow flag
32	OE	ip	Tristate output enable. HIGH = enabled; LOW = tristate
33	RND	ip	Output rounding enable. HIGH = enabled; LOW = disabled
34	GF0	ip	Filter gain coefficient (lsb)
35	GF1	ip	Filter gain coefficient (bit 1)
36	GF2	ip	Filter gain coefficient (bit 2)
37	GF3	ip	Filter gain coefficient (bit 3)
38	GF4	ip	Filter gain coefficient (bit 4)
39	GF5	ip	Filter gain coefficient (msb)
40	VSS3		Ground pin 3
41	VDD3		5 V supply pin 3
42	GI0	ip	Unfiltered signal gain select (Isb)
43	GI1	ip	Unfiltered signal gain select (bit 1)
44	GI2	ip	Unfiltered signal gain select (msb)
45	FNC0	ip	Function select (lsb)

SM5835AF

Pin number	Pin name	I/O	Description
46	FNC1	ip	Function select (bit 1)
47	FNC2	iρ	Function select (msb)
48	T01	0	Test output 1
49	TI1N	iρ	Test input 1 (tie HIGH for normal operation)
50	TI2N	ip	Test input 2 (tie HIGH for normal operation)
51	(NC)		No connection
52	(NC)		No connection
53	TCN	ip	Input format select. HIGH = unsigned absolute; LOW = 2s complement
54	DI7	ip	Input data (msb)
55	DI6	ip	Input data (bit 6)
56	DI5	ip	Input data (bit 5)
57	DI4	ip	Input data (bit 4)
58	VSS4	ip	Ground pin 4
59	VDD4	ip	5 V supply pin 4
60	DI3	ip	Input data (bit 3)
61	Dl2	ip	Input data (bit 2)
62	Dl1	ip	Input data (bit 1)
63	DIO	ip	Input data (lsb)
64	RSTN	ip	Reset

Note

i = input, ip = input with pull-up, o = output

Absolute Maximum Ratings

 $V_{ss} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.3 to 7.0	٧
Input voltage range	Vin	V_{SS} - 0.3 to V_{DD} + 0.3	V
Storage temperature range	T _{STG}	-40 to 125	°C
Power dissipation	PD	400	mW
Soldering temperature	T _{SLD}	255	°C
Soldering time	tslD	10	s

Recommended Operating Conditions

 $V_{ss} = 0 V$

Parameter	Symbol	Conditions	Unit
Supply voltage	V _{DD}	4.75 to 5.25	٧
Operating temperature	Topr	-20 to 70	°C

DC Electrical Characteristics

 $T_a = -20$ to 70° C, $V_{SS} = 0$ V, $V_{DD} = 4.75$ to 5.25 V unless otherwise noted

Parameter	Pins	Crembal	Conditions		11-5		
Parameter		Symbol Conditions	min	typ	max	Unit	
Current consumption	*1	l _{DD}	See note.	_	60	80	mA
lanut voltage	*0 *4	ViH		2.4	-	_	.,
Input voltage	*3, *4	V _{IL}		_	-	0.5	v
	*5, *6	VoH	$l_{OH} = -0.4 \text{ mA}$	4.0	-	-	٧
Output voltage		Vol	l _{OL} = 1.6 mA	_	_	0.4	
Input current	*4	l _{IL}	VIN = 0 V		10	20	μА
lanut lookogo ourroet	*3, *4	I _{LH}	$V_{IN} = V_{DD}$	-	-	1	μА
Input leakage current	*3	lu	V _{IN} = 0 V	_	-	1	
Output high-impedance leakage current	*c	Іц	$V_{IN} = V_{DD}$	_	-	5	
	+6 LL	V _{IN} = 0 V	_	-	5	μΑ	

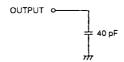
Note

 V_{DD} = 5.0 V, CLK frequency f_C = 14.5 MHz, all outputs unloaded.

Pin classification

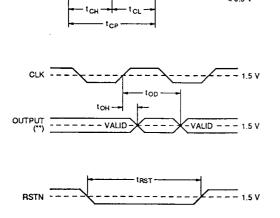
Pin type	Pin type number	Pins
V _{DD} pins	*1	VDD1, VDD2, VDD3, VDD4
V _{SS} pins	*2	VSS1, VSS2, VSS3, VSS4
Input pins	*3	CLK
Input pins with pull-up	*4	DIO to 7, DLO to 9, SZO to 2, FNCO to 2, TCN, RND, GIO to 2, GFO to 5, TI1N, TI2N, RSTN, OE
Output pins	*5	OVF, TO1
Tristate outputs	*6	DO0 to 11

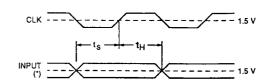
AC Electrical Characteristics

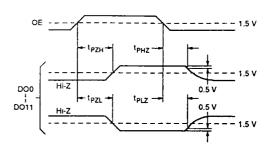

 $T_a = -20$ to 70° C, $V_{SS} = 0$ V, $V_{DD} = 4.75$ to 5.25 V unless otherwise noted

Parameter	Symbol	0		Rating		
		Conditions	min	typ	max	Unit
CLK period	tcp		68	-	1000	ns
CLK LOW-level interval	tcL		30	-	500	ns
CLK HIGH-level interval	tсн		.30	-	500	ns
CLK rise time	tcn	1.0 to 2.0 V	_	-	10	ns
CLK fall time	tcF	1.0 to 2.0 V	_	-	10	ns
Input data setup time	ts		30	-	_	ns
Input data hold time	tн		0	-	-	ns

Parameter Parameter	Symbol	Conditions	Rating			11-14
	Symbol	Conditions	min	typ	max	Unit
CLK to data output delay	top1		-	-	50	ns
CLK to data output hold time	tонı	Load conditions 1	5	-	-	ns
CLK to OVF output delay	t _{OD2}	(Note 1)	_	-	50	ns
CLK to OVF output hold time	t _{OH2}		5	-	-	ns
OF to date output and but delice	tpzL		-	-	40	ns
OE to data output enabled delay	tрzн	Load conditions 2	-	-	40	ns
OE to data output disabled delay	T _{PLZ}	(Note 2)	-	-	40	ns
OL to data output disabled delay	tрнz		-	-	40	ns
RSTN pulsewidth	trst .	1.0 to 2.0 V	50	_	-	ns
Input capacitance	Cin	fc = 1 MHz	-	-	10	pF
Output capacitance	Cout	fc = 1 MHz	-	_	15	pF


Note


1. Load conditions 1



2. Load conditions 2

Timing Diagrams

FUNCTIONAL DESCRIPTION

The SM5835AF is a video-signal rate two-dimensional digital filter for non-interlaced 8-bit images. It contains eight sets of 3×3 -pixel filter coefficients in ROM. Although it is not possible to program the SM5835AF with your own sets of coefficients, this configuration eliminates the need for an external coefficient loading chip. The internal variable-length delay lines support any frame size without the need for external memory.

3 × 3-element Filter

Basic operation

The two-dimensional filter calculation operates by scanning across the image. At each pixel, that pixel and the neighboring eight pixels are each multiplied by the corresponding coefficient. These products are summed to give the filter output for that pixel. For example, for image X and coefficients C,

y (i, j) =
$$\sum_{n=0}^{2} \sum_{m=0}^{2} [C(n, m) \times X (i + n - 1, j + m - 1)]$$

C(0, 0)	C(0, 1)	C(0, 2)
C(1, 0)	C(1, 1)	C(1, 2)
C(2, 0)	C(2, 1)	C(2, 2)

Figure 1. 3×3 filter coefficient matrix

X(i-1, j-1)	X(i-1, j)	X(i-1, j+1)
X(j, j-1)	X(i, j)	X(i, j+1)
X(i+1, j-1)	X(i+1, j)	X(i+1, j+1)

Figure 2. 3 × 3 nearest-neighbour matrix (filter input)

y(i, j)	

Figure 3. 3×3 filter output

Filter coefficients

Pins FNC0 to FNC2 select one of eight different sets of filter coefficients, from four different types of filter. In the following descriptions, the value FNC is the number represented by FNC0 to FNC2.

Averaging filter (noise reduction)

This filter takes the average of all nine pixels in the 3×3 -pixel window, thus reducing the amplitude of the noise component by a factor of nine. This also has the side-effect of reducing the sharpness of the image. The SM5835AF requires filter coefficients to be a multiple of 1/2. Therefore, all coefficients are equal to 1/8, as shown in figure 4, instead of 1/9. The filter thus has a net gain 1.125 (9/8). To compensate, set the filter gain coefficients GF0 to GF5 to 001110. This corresponds to a gain of 14/16 = 0.875, bringing the net gain back to close to unity.

y (i, j) = (1/8)
$$\sum_{n=0}^{2} \sum_{m=0}^{2} X(i + n - 1, j + m - 1)$$

1/8	1/8	1/8
1/8	1/8	1/8
1/8	1/8	1/8

[FNC = 000]

Figure 4. Averaging filter coefficients

Laplacian filters (image sharpening)

The Laplacian filters emphasize the high-frequency components of the image. The filter coefficients are equal to either

$$\begin{bmatrix} -(1/8\nabla)^2 X(i, j) \end{bmatrix}$$
r

 $[-(1/4)\nabla^2 X(i, j)]$

· Laplacian filter 1

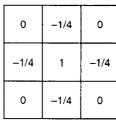
This filter uses the eight neighboring pixels:

$$y(i, j) = X(i, j) - \frac{1}{8} \begin{bmatrix} X(i-1, j-1) + X(i-1, j) + X(i-1, j+1) + X(i, j-1) + X(i, j+1) + X(i+1, j-1) \\ + X(i+1, j) + X(i+1, j+1) \end{bmatrix}$$

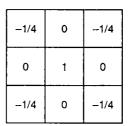
• Laplacian filter 2

This filter uses the four vertical and horizontal neighbors:

$$y(i, j) = X(i, j) - 1/4[X(i - 1, j) + X(i, j - 1) + X(i, j + 1) + X(i + 1, j)]$$


• Laplacian filter 3

This filter uses the four diagonal neighbors:


$$y(i, j) = X(i, j) - 1/4[X(i - 1, j - 1) + X(i - 1, j + 1) + X(i + 1, j - 1) + X(i + 1, j + 1)]$$

-1/8	-1/8	-1/8
-1/8	1	-1/8
-1/8	-1/8	-1/8
1:	olacian	1

Laplacian 1 [FNC = 001]

Laplacian 2 [FNC = 010]

Laplacian 3 [FNC = 011]

Figure 5. Laplacian filter coefficients

Template matching (line enhancement)

These two filters provide templates for enhancing horizontal and vertical lines. They are specific instances of the general principle by which image features can be enhanced by correlating image segment with a matching template.

· Vertical line detection

$$y(i, j) = (1/4)[X(i-1, j) + X(i, j) + X(i+1, j)] - (1/8)[X(i-1, j-1) + X(i-1, j+1) + X(i, j-1) + X(i, j+1) + X(i+1, j-1) + X(i+1, j+1)]$$

· Horizontal line detection

$$y(i, j) = (1/4)[X(i, j-1) + X(i, j) + X(i, j+1)] - (1/8)[X(i-1, j) + X(i-1, j-1) + X(i-1, j+1)] + X(i-1, j-1) + X(i+1, j) + X(i+1, j+1)]$$

-1/8	1/4	-1/8
-1/8	1/4	1/8
-1/8	1/4	-1/8

Vertical line detector output [FNC = 100]

Horizontal line detector output [FNC = 101]

Figure 6. Horizontal and vertical line detection

Differencing (edge enhancement)

The SM5835AF provides horizontal and vertical Sobel operators to enhance image edges. The Sobel processing is not completely performed by the

SM5835AF, since square root and squaring operations are also required.

· Horizontal Sobel operation

$$\mathbf{y}\mathbf{H}(\mathbf{i},\ \mathbf{j}) = -\ (1/4)[\mathbf{X}(\mathbf{i}-1,\ \mathbf{j}-1) + 2*\mathbf{X}(\mathbf{i},\ \mathbf{j}-1) + \mathbf{X}(\mathbf{i}+1,\ \mathbf{j}-1)] \\ +\ (1/4)[\mathbf{X}(\mathbf{i}-1,\ \mathbf{j}+1) + 2*\mathbf{X}(\mathbf{i},\ \mathbf{j}+1) + \mathbf{X}(\mathbf{i}+1,\ \mathbf{j}+1)]$$

• Vertical Sobel operation

$$yV(i, j) = (1/4)[X(i - 1, j - 1) + 2*X(i - 1, j) + X(i - 1, j + 1)] - (1/4)[X(i + 1, j - 1) + 2*X(i + 1, j) + X(i + 1, j + 1)]$$

-1/4	0	1/4
-1/2	0	1/2
-1/4	0	1/4

Sobel operator (horizontal direction) [FNC = 110]

Sobel operator (vertical direction)
[FNC = 101]

Table 1. Decimation selection

Figure 7. Sobel operators

Two SM5835AFs are needed to process the signal in both horizontal and vertical directions, producing the outputs yH(i, J) and yV(i, j). Additional external processing is required to perform the complete operation, as follows.

$$y(i, j) = [[yH(i, j)]^2 + [yV(i, j)]^2]^{1/2}$$

SZ1 SZ0 Decimation 0 0 No decimation 1 1 Decimate by two 1 0 Decimate by four

Decimation Register

Pins SZO and SZ1 set the decimation factor to one (no decimation), two or four, as shown in table 1. With decimation enabled, the filter coefficients are multiplied by every second or fourth horizontal pixel, instead of every pixel. Figures 6 to 8 illustrate the effect of the different decimation settings.

X(i−1, j−1)	X(i–1, j)	X(i–1, j+1)
X(j, j-1)	X(i, j)	X(i, j+1)
X(i+1, j–1)	X(i+1, j)	X(i+1, j+1)

Figure 8. Filter operation with no decimation

X(i-1, j-2)	D	X(i-1, j)	D	X(i-1, j+2)
X(j, j–2)	D	X(i, j)	D	X(i, j+2)
X(i+1, j-2)	D	X(i+1, j)	D	X(i+1, j+2)

Figure 9. Filter operation with decimation by two

X(i-1, j-4)	D	D	D	X(i–1, j)	D D		D	X(i-1, j+4)
X(j, j-4)	D	D	D	X(i, j)	D	D	D	X(i, j+4)
X(i+1, j-4)	D	D	D	X(i+1, j)	D	D	D	X(i+1, j+4)

Figure 10. Filter operation with decimation by four

The decimation feature is provided to allow the filter characteristics to be changed. The following

equations give the exact equations for the filter outputs.

1. No decimation (SZ0 = 0, SZ1 = 0, or SZ20 = 1, SZ1 = 1)

$$y(i, j) = \sum_{n=0}^{2} \sum_{m=0}^{2} [C(n, m) \times X(i + n - 1, j + m - 1)]$$

2. Decimation by two (SZ0 = 1, SZ1 = 0)

$$y(i, j) = \sum_{n=0}^{2} \sum_{m=0}^{2} [C(n, m) \times X(i + n - 1, j + 2m - 2)]$$

3. Decimation by four (SZ0 = 0, SZ1 = 1)

$$y(i, j) = \sum_{n=0}^{2} \sum_{m=0}^{2} [C(n, m) \times X(i + n - 1, j + 4m - 4)]$$

Variable-length Delay (DL0 to DL9)

The SM5835AF's inbuilt delay lines can be set to be lengths between 14 and 1037 pixels log. The length of the delay lines, $L_{\rm H}$, is set by the DL0 to DL9 pins, as given by the following equation.

$$L_{\rm H} = 14 + \sum_{k=0}^{9} DL_k \times 2^k$$

Table 2. Delay line length settings

Length settings	DL9	DL8	DL7	DL6	DL5	DL4	DL3	DL2	DL1	DL0
14	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	1
16	0	0	0	0	0	0	0	0	1	0
17	0	0	0	0	0	0	0	0	1	1
18	0	0	0	0	0	0	0	1	0	0
:	:	:	:	:	:	:	:	:	:	:
512	0	1	1	1	1	1	0	0	1	0
513	0	1	1	1	1	1	0	0	· 1	1
:	:	:	:	:	;	:	:	:	:	:
1024	1	1	1	1	1	1	0	0	1	0
1025	1	1	1	1	1	1	0	0	1	. 1
:	:	:	:	:	:	:	÷	:	:	:
1036	1	1	1	1	1	1	1	1	1	0
1037	1	1	1	1	1	1	1	1	1	1

Source and Filtered Signal Gains (GI0 to GI2, GF0 to GF5)

The SM5835AF allows the gains of the original source signal and the filtered signal to be independently controlled. GF0 to GF5 control the gain of the filtered signal. These six bits represent a 2s-complement fixed-point number, with two integer bits and four fractional bits. The value is given by the following equation.

Table 3 summarises the effect of GF0 to GF5. GI0 to GI2 control the gain of the input signal. Table 4 lists the effect of these pins.

$$G_{FL} = -GF5 \times 2 + \sum_{k=0}^{4} GFk \times 2^{k-4}$$

Table 3. Filtered signal gain control

Gain	GFk	GF5	GF4	GF3	GF2	GF1	GF0
Gain	Weight	-2	1	1/2	1/4	1/8	1/16
1 + 15/16	= 1.9375	0	1	1	1	1	1
1 + 14/16	= 1.875	0	1	1	1	1	0
:	:	÷	:	:	:	:	:
1	= 1.0	0	1	0	0	0	0
15/16	15/16 = 0.9375		0	1	1	1	1
:	<u> </u>	;	:	÷	:	:	:
1/16	= 0.0625	0	0	0	0	0	1
0	= 0.0	0	0	0	0	0	0
-1/16	= -0.0625	1	1	1	1	1	1
:	:	:	;	;	:	;	:
-1	= -1.0	1	1	0	0	0	0
-1 - 1/16	= -1.0625	1	0	1	1	1	1
:	:	:	:	:	:	:	:
-1 - 15/16	= -1.9375	1	0	0	0	0	1
-2	= -2.0	1	0	0	0	0	0

Table 4. Source singnal gain control

Gain	GIN	GI2	Gl1	GI0
0	= 0.0	0	0	0
1/2	= 0.5	0	0	1
3/4	= 0.75	0	1	0
7/8	= 0.875	0	1	1
15/16	= 0.9375	1	0	0
		1	0	1
1	= 1.0	1	1	0
		1	1	1

Clock Input (CLK)

The clock input, CLK, controls the operation of every part of the SM5835AF. The maximum clock

frequency is 14.5 MHz, the minimum, 1 MHz. All input and output data transfer is synchronized to the system clock.

Input Data (DI0 to DI7)

The input data can be in either unsigned-magnitude or 2s complement format. The format is selected by the TCN pin—TCN = HIGH: Unsigned-magnitude, and TCN = LOW: 2s complement.

In unsigned-magnitude format, all eight bits represent an unsigned integer value—input values range from 0 to 255. In 2s complement format, the most-significant bit represents the sign of the number—input values range from -128 to +127. Internally, the SM5835AF uses 9-bit 2s-complement arithmetic.

Table 5. Input data table

		8-bi	t unsig	ned ma	gnitude	;			8-bit 2s complement								
(XLSB)	7	6	5	4	3	2	1	0	(XLSB)	7	6	5	4	3	2	1	0
+MAX (255)	1	1	1	1	1	1	1	1									
(254)	1	1	1	1	1	1	1	0								····	····
:																	
(128)	1	0	0	0	0	0	0	0									
(127)	0	1	1	1	1	1	1	1	+MAX (127)	0	1	1	1	1	1	1	1
(126)	0	1	1	1	1	1	1	0	(126)	0	1	1	1	1	1	1	0
									;	·							
+1LSB	0	0	0	0	0	0	0	1	+1LSB	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									-1LSB	1	1	1	1	1	1	1	1
									:		-						
									(-127)	1	0	0	0	0	0	0	1
									-MAX (-128)	1	0	0	0	0	0	0	0,

Output Data (DO0 to DO11, RND, OVF)

Output data format

The output data is in 12-bit unsigned-magnitude or 2s complement format. The output format is the same as the currently-selected input format, but with an additional four bits for numerical precision. That is, if the input data is treated as an 8-bit integer, then the output data has an effective decimal point between bits three and four.

Table 6. Input/output data format (TCN = H)

TCN = H (Unsigned magnitude)

Xin =
$$\sum_{k=0}^{7} (DIk) \times 2^{k}$$

Yout = $\sum_{k=0}^{11} (DIk) \times 2^{k-4}$

Data				Decimal								
	27	26	2 ⁵	24	2 ³	22	21	20	2-1	2-2	2-3	2-4
Input data DIO to 7	DI7	D16	DI5	DI4	DI3	DI2	DI1	Dio				
Output data DO0 to 11	DO11	DO10	DO9	DO8	DO7	DO6	DO5	DO4	DO3	DO2	DO1	DO0

TCN = L (2s complement)

$$Xin = - (DI7) \times 2^7 + \sum_{k=0}^{6} (DIk) \times 2^k$$

Yout = - (DO11) ×
$$2^7$$
 + $\sum_{k=0}^{10}$ (DIk) × 2^{k-4}

Table 7. Input/output data format (TCN = L)

Data				Decimal								
Data	-27	26	2 ⁵	24	23	2 ²	21	20	2-1	2-2	2-3	2-4
Input data DIO to 7	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO				
Output data DO0 to 11	DO11	DO10	DO9	DO8	D07	DO6	DO5	DO4	DO3	DO2	DO1	DO0

Overflow limiter

Although the internal arithmetic of the SM5835AF uses extra bits for precision, overflow can occur when the output signal is limited to the number of output bits. To prevent this, the SM5835AF includes an output limiting circuit. In unsigned-magnitude mode, the output data range is from 0 to 255, and in 2s-complement mode, the output data range is from -128 to +127.

Overflow flag

The OVF output goes HIGH when an internal overflow has been detected, and the overflow limiter has operated. If an overflow is detected, reduce the gain using the GI0 to GI2 and GF0 to GF5 control pins.

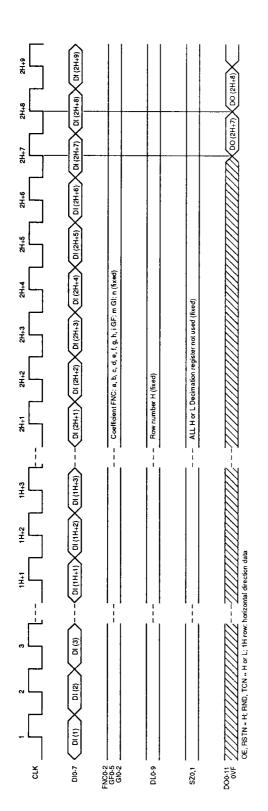
Output data rounding

An output rounding mode is provided for systems in which only the higher eight bits of the output are read. If the RND pin is HIGH, 1 is added to bit 3. That is, 2^{-1} is added to the output.

Tristate output

Output pins DO0 to Do11 are tristate outputs, enabled by the OE pin. They are enabled if OE is HIGH, and high-impedance if OE is LOW.

Reset (RSTN)


The SM5835AF requires a reset pulse to initialize its internal timing circuits. A reset pulse must be applied to the RTSN pin in the following circumstances.

- · Power is applied
- The system clock is stopped for 10 µs or more.

For reset, RSTN must be held LOW for at least two CLK cycles.

TIMING CHARTS

Relation between Input and Output Data

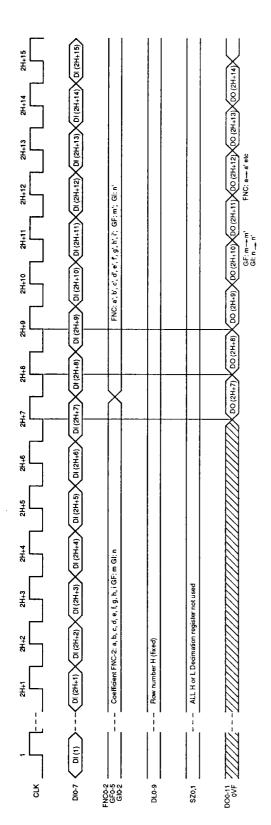
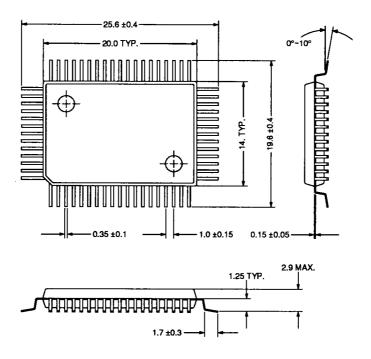

Output	(y) oa	DO (Y) DO (1) - DO (4)	DO (5)	(e) DO (e)	(2) OQ	-	DO (1H + 5)	DO (1H + 6)	DO (1H+7)	! !	DO (2H + 5)	DO (2H + 6)	DO (2H+7)	DO (2H + 8)
	a Y33	ax	aDI (1)	aDI (2)	aDI (3)		aDl (1H+1)	aDI (1H+2)	aDI (1H+3)		aDI (2H + 1)	aDI (2H + 2)	aDI (2H + 3)	aDI (2H + 4)
	p.x32	ž	χq	(1) 1Qq	(Z) Qq		(H1)	bDI (1H+1)	5DI (1H+2)		bDI (2H)	bDI (2H+1)	bDI (2H+2)	bDI (2H + 3)
	cY31	χ	స	×	cDl (1)		cD! (1H-1)	ADI (1H)	cD! (1H+1)		cDI (2H - 1)	cD! (2H)	cDI (2H + 1)	cDI (2H + 2)
	dY23	¥	χp	χ	χ		(1)	dDI (2)	(E) IQP		dDi (1H+1)	dDI (1H+2)	dDI (1H+3)	dDI (1H + 4)
Term and	eY22	Χθ	Хө	Χθ	Xθ		Χθ	eD! (1)	eDI (2)		(1H)	eDI (1H+1)	eDI (1H+2)	eDI (1H+3)
coefficient	1721	×	×	¥	×	1	×	×	(1)	1 1	(1H-1)	(HI) IQI	(1H+1)	fDi (1H + 2)
	gY13	Хб	χŝ	Хб	Æ,		×6	×6	×6		(1) IQ6	gDI (2)	(E) IQB	gDI (4)
	hY12	χų	Υų	χų	ž		Χų	ž	ž		ž	hD! (1)	hDI (2)	(S) IQH
	IY11	×	×	×	×		×	×	×		¥	×	(1) (1)	(2)
	GF	E	Ε	Ε	E		Ε	Ε	ε		ε	E	E	Ε
	nY22	ž	ž	ž	χ̈		χı	(1) IQI	nDI (2)		nOI (1H)	nDI (1H+1)	nDI (1H+2)	nOl (1H + 3)
DO (Y) = m	(iY11 + hY	DO(X) = m(Y11 + bX12 + aX13 + fX21 + aX22 + d)	+ 6V27 + dV23	223 + cV31 + bV32 + aV32) + aV22 : ENCO.2: a h c a (a h i: GF: m: GI: n: X is a variable	3V33) 4 nV22 · EN	ICO.2: a b	to to bire	F. II. G. n. X is	variable					

Figure 11. Relation between input data, output data and coefficients

Y23

Y32 Y33

Relation between Coefficients and Output Data



Ξ	2		, 43		m		-	L	-		.	3 x 3 filte
												~ en
DO (2H + 14)	a'Di (2H + 10)	b'Di (2H + 9)	c'DI (2H + 8)	d'DI (1H + 10)	e'DI (1H + 9)	fDI (1H+8)	g'DI (10)	h'D! (9)	7D! (8)	Ë	n'Di (1H + 9)	
DO (2H + 13)	a'DI (2H + 9)	b'D! (2H + 8)	c'Dl (2H + 7)	dDI (1H+8) d'DI (1H+9)	e'Di (1H + 8)	fDi (1H+7)	(6) IQ, B	h'DI (8)	(2) IQJ	Ē	n'DI (1H + 8)	
DO (2H+10) DO (2H+11) DO (2H+12) DO (2H+13) DO (2H+14)	aDI (2H + 8)	bDI (2H + 7)	cDI (2H + 6)		6DI (1H + 7)	(1H + 6)	(8) IQ6	(2) IQ4	(9) IQ!	Ę.	n'Di (1H+7)	ı variable.
DO (2H + 11)	aDI (2H + 7)	bDI (2H + 6)	cDI (2H + 5)	(7 + H1) IQP	(9 + H1) IQ9	(1H+5)	(7) lag	(9) IQU	(S) {Q!	,E	n'DI (1H + 6)	F: m; GI: n; X is a
DO (2H + 10)	aDI (2H + 6)	bDI (2H + 5)	cDI (2H + 4)	(9 + H1) IQP	eDI (1H + 5)	fDI (1H + 4)	(9) IQB	hDI (5)	iDI (4)	Ë	n'Di (1H+5)	o, c, e, f, g, ħ, i; G
DO (2H + 9)	aDI (2H + 5)	bD! (2H + 4)	cDI (2H + 3)	(1H+5)	6DI (1H + 4)	fDI (1H+3)	(s) IQ6	(4)	(E) IQ!	٤	nDI (1H + 4)	722; FNC0-2: a, t
DO (2H+8)	aDI (2H + 4)	bDI (2H + 3)	cDI (2H + 2)	dD! (1H + 4)	eDi (1H + 3)	1DI (1H+2)	gDi (4)	(E) IQ4	(Z) IQ!	Е	nDI (1H + 3)	DO (Y) = m (YY11 + hY12 + gY13 + fY21 + 6Y22 + dY23 + cY31 + bY32 + aY33) + nY22; FNCO-2: a, b, c, e, f, g, h, i; GF: m; GI: n; X is a variable.
DO (2H + 7)	aDI (2H + 3)	bDI (2H + 2)	cDI (2H + 1)	(E + H1) QP	eDI (1H + 2)	(1 + H)	(S) IQ6	(z) IQ4	(1) IQ!	E	nDI (1H + 2)	dY23 + cY31 + b
į į						1						+ 6Y22 +
(ı) 00	×	ž	ধ	¥	×	×	X6	¥	×	Ε	ž	2 + gY13 + fY21
(X) Oa	aY33	PY32	cY31	dY23	eY22	fY21	gY13	hY12	i¥11	GF	nY22	iY11 + hY1
Output			•		Term and	coefficient						DO (Y) ≈ m (

Figure 12. Relation between input data, output data and coefficients

PACKAGE OUTLINE

Unit: mm

NIPPON PRECISION CIRCUITS LTD. reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Ltd. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Ltd. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

NIPPON PRECISION CIRCUITS LTD.

Shuwa Sakurabashi Building 5-4, Hachobori 4-chome Chuo-ku, Tokyo 104, Japan Telephone: 03-3555-7521 Facsimile: 03-3555-7528

NC9259A 1993.03