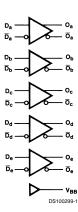
National Semiconductor

100314 Low Power Quint Differential Line Receiver

General Description

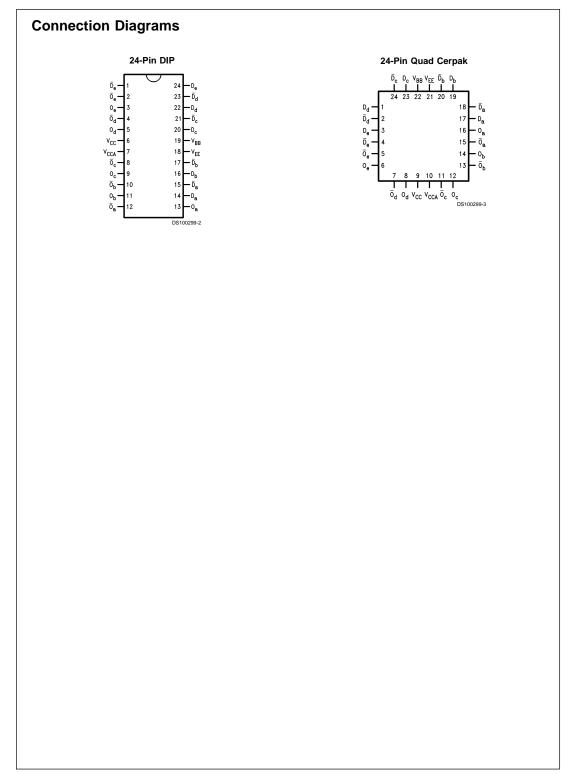
The 100314 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply (V_{BB}) is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 mV to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.

Active current sources provide common-mode rejection of 1.0V in either the positive or negative direction. A defined output state exists if both inverting and non-inverting inputs are at the same potential between V_{EE} and V_{CC}. The defined state is logic HIGH on the $\overline{O}_a - \overline{O}_e$ outputs.


August 1998

Features

- 35% power reduction of the 100114
- 2000V ESD protection
- Pin/function compatible with 100114
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9162901


100314 Low Power Quint Differential Line Receiver

Logic Symbol

Pin Names	Description					
$D_a - D_e$	Data Inputs					
$\overline{D}_{\mathrm{a}} - \overline{D}_{\mathrm{e}}$	Inverting Data Inputs					
$\overline{D}_{a} - \overline{D}_{e}$ $O_{a} - O_{e}$	Data Outputs					
$\overline{O}_{a} - \overline{O}_{e}$	Complementary Data Outputs					

© 1998 National Semiconductor Corporation DS100299

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impaired (Note 1)							
Storage Temperature (T _{STG})	-65°C to +150°C						
Maximum Junction Temperture (T _J)							
Ceramic	+175°C						
Pin Potential to Ground Pin (V _{EE})	-7.0V to +0.5V						
Input Voltage (DC)	V _{EE} to +0.5V						
Output Current (DC Output HIGH)	–50 mA						

ESD (Note 2)

Recommended Operating Conditions

Case Temperature (T_C)

≥2000V

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C (Note 5)

Symbol	Parameter	Min	Тур	Max	Units	Tc	Cond	Notes	
V _{OH}	Output HIGH Voltage	-1025		-870	mV	0°C to	$V_{IN} = V_{IH}$ (Max) or V_{IL} (Min)	Loading with 50Ω to -2.0V	
						+125°C			
		-1085		-870	mV	–55°C			(Notes 3, 4, 5)
V _{OL}	Output LOW Voltage	-1830		-1620	mV	0°C to			
						+125°C			
		-1830		-1555	mV	–55°C			
V _{OHC}	Output HIGH	-1035			mV	0°C to	$V_{IN} = V_{IH}$ (Max) or V_{IL} (Min)	Loading with 50Ω to -2.0V	
	Voltage					+125°C	or v _{IL} (win)	50Ω to -2.0V	
		-1085			mV	–55°C			(Notes 3, 4, 5)
V _{OLC}	Output LOW			-1610	mV	0°C to			
	Voltage					+125°C			
				-1555	mV	–55°C			
V_{BB}	Output Reference			-1260	mV	0°C to	$I_{VBB} = 0 \ \mu A, V_{EE} = 4.2V$		(Notes 3, 4, 5)
	Voltage					+125°C	I _{VBB} = -250 μA, V _{EE} = -5.7V		
		-1380		-1260	mV	0°C to			
						+125°C			(Notes 3, 4, 5)
		-1396			mV	–55°C	I_{VBB} = -350 μ A, V_{EE} = -5.7V		
V _{DIFF}	Input Voltage	150			mV	–55°C to	o Required for Full Output Swing		(Notes 3, 4, 5)
	Differential					+125°C			
V _{CM}	Common Mode	V _{CC} – 2.0		V _{CC} - 0.5	V	–55°C to			(Notes 3, 4, 5)
	Voltage					+125°C			
V _{IH}	Single-Ended	-1165		-870	mV	–55°C to	Guaranteed HIGH Signal for All		(Notes 3, 4, 5, 6)
	Input High Voltage					+125°C	Inputs (with \overline{D}_n^- tied to V _{BB})		
VIL	Single-Ended -1830 -1475 mV -55°C to		–55°C to	Guaranteed LOW Signal for All		(Notes 3, 4, 5, 6)			
	Input Low Voltage					+125°C	Inputs (with \overline{D}_n^- tied to V _{BB})		
I _{IH}	Input HIGH Current			50	μA	0°C to	$V_{IN} = V_{IH (Max)}, D_a - D_e = V_{BB},$		
						+125°C	$\overline{D}_a - \overline{D}_e = V_{IL (Min)}$		(Notes 3, 4, 5)
				70	μA	–55°C			
I _{CBO}	Input Leakage	-10			μA	–55°C to		= V _{BB} ,	(Notes 3, 4, 5)
	Current					+125°C	$\overline{D}_a - \overline{D}_e = V_{IL (Min)}$		
I _{EE}	Power Supply	-65		-25	mA	–55°C to	$D_a - D_e = V_{BB}$,		(Notes 3, 4, 5)
	Current					+125°C	$\overline{D}_a - \overline{D}_e = V_{IL (Min)}$		

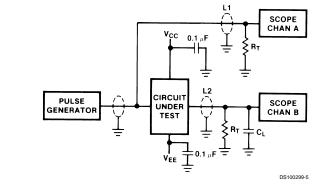
Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

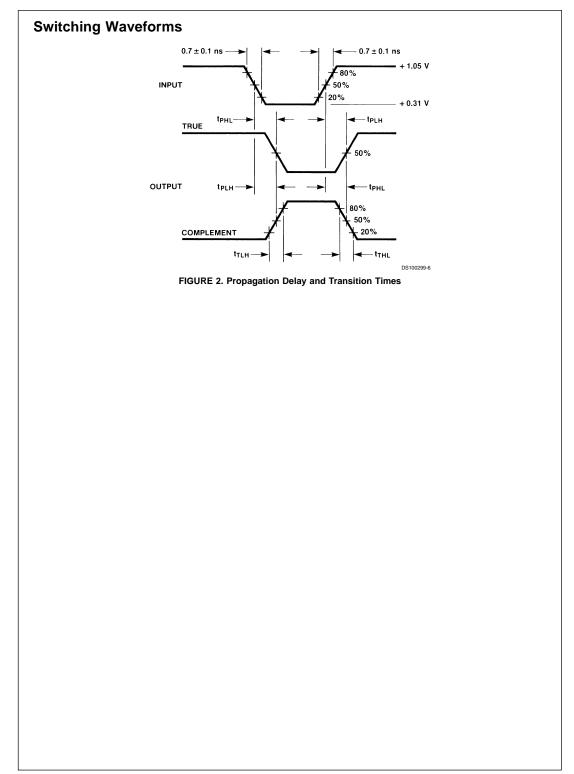
Note 6: Guaranteed by applying specified input condition and testing $V_{\text{OH}}/V_{\text{OL}}.$

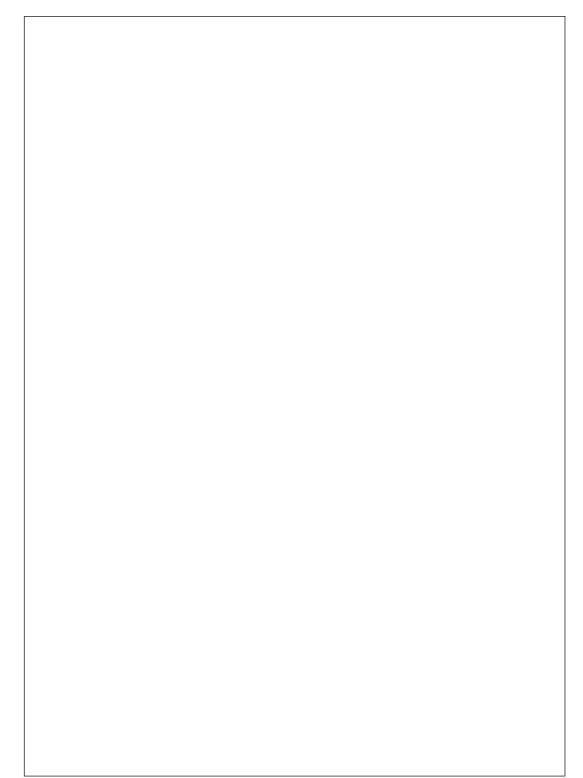
AC Electrical Characteristics

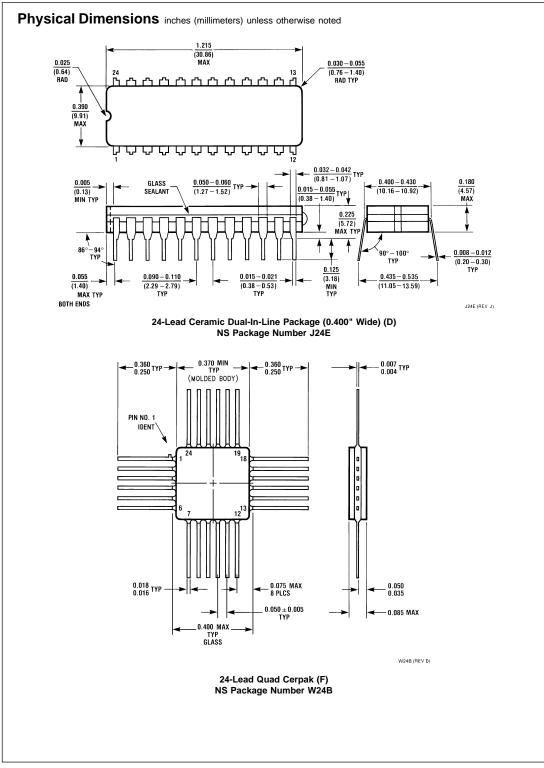

$V_{EE} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA} = GND$										
Symbol	Parameter	Т. –5	ຼ= 5°C		T _c = T _c = +25°C +125°C		T _c = +125°C		Conditions	Notes
		Min	Max	Min	Max	Min	Max	1		
t _{PLH}	Propagation Delay	0.40	2.30	0.60	2.20	0.60	2.70	ns		(Notes 7, 8, 9)
t _{PHL}	Data to Output								Figures 1, 2	
t _{TLH}	Transition Time	0.20	1.40	0.20	1.40	0.20	1.40	ns		(Note 10)
t _{THI}	20% to 80%, 80% to 20%									

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.


Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C and -55°C temperature (design characterization data).


Test Circuit



 $\begin{array}{l} \mbox{Note:} V_{CC}, \ V_{CCA} = +2V, \ V_{EE} = -2.5V \\ \mbox{L1 and } L2 = equal length 50Ω impedance lines \\ R_T = 50\Omega$ terminator internal to scope \\ \mbox{Decoupling } 0.1 \ \mu F from GND to V_{CC} and V_{EE} \\ \mbox{All unused outputs are loaded with 50Ω to GND \\ \ C_L = Fixture and stray capacitance $\leq 3 \ pF \\ \end{array}$

FIGURE 1. AC Test Circuit

www.national.com

7

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ameri Tel: 1 Fax: 1	-800-272-9959 1-800-737-7018 : support@nsc.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-532 43 16 80	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
www.national.	.com	Raliano Tel. +49 (0) 1 80-334 10 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.