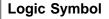
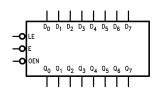
00344 Low Power 8-Bit Latch with Cut-Off Drivers

National Semiconductor

100344 Low Power 8-Bit Latch with Cut-Off Drivers

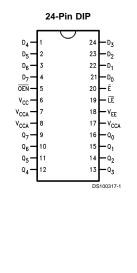
General Description

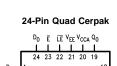

The 100344 contains eight D-type latches, individual inputs (\underline{D}_n) , outputs (Q_n) , a common enable pin (\overline{E}) , latch enable (\overline{LE}) , and output enable pin (\overline{OEN}) . A Q output follows its D input when both \overline{E} and \overline{LE} are LOW. When either \overline{E} or \overline{LE} (or both) are HIGH, a latch stores the last valid data present on its D input prior to \overline{E} or \overline{LE} going HIGH.

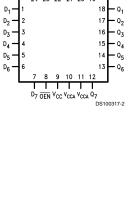

A HIGH on $\overline{\text{OEN}}$ holds the outputs in a cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100344 outputs are designed to drive a doubly terminated 50 Ω transmission line (25 Ω load impedance). All inputs have 50 k Ω pull-down resistors.

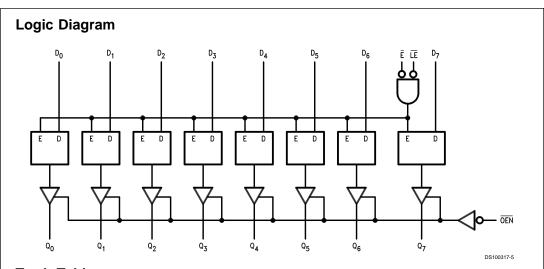
Features


- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883





Pin Names Description D₀-D₇ Data Inputs Ē Enable Input LĒ Latch Enable Input OEN Output Enable Input Q₀-Q₇ Data Outputs



© 1998 National Semiconductor Corporation DS100317

Truth Table

	Inputs	Outputs		
D _n	D _n E LE OEN		Q _n	
L	L	L	L	L
Н	L	L	L	н
Х	н	х	L	Latched (Note 1)
х	х	н	L	Latched (Note 1)
Х	Х	х	н	Cutoff

H = HIGH Voltage level L = LOW Voltage level Cutoff = lower-than-LOW state

X = Don't Care

Note 1: Retains data present before either $\overline{\text{LE}}$ or $\overline{\text{E}}$ go HIGH.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Above which the useful life may be impaired

Storage Temperature (T _{STG}) Maximum Junction Temperature (T _{.1})	–65°C to +150°C
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–100 mA
Ceramic V_{EE} Pin Potential to Ground Pin Input Voltage (DC)	-7.0V to +0.5V V _{EE} to +0.5V

ESD (Note 3)

Recommended Operating Conditions

Case Temperature (T_C)

≥2000V

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

.

DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	Тc	Conditions		Notes	
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to				
					+125°C				
		-1085	-870	mV	–55°C	V _{IN} = V _{IH} (Max)	Loading with	(Notes 4, 5,	
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL} (Min)	25Ω to -2.0V	6)	
					+125°C				
		-1830	-1555	mV	–55°C				
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to				
					+125°C				
		-1085		mV	–55°C	V _{IN} = V _{IH} (Min)	Loading with	(Notes 4, 5,	
Volc	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max)	25Ω to -2.0V	6)	
					+125°C				
			-1555	mV	–55°C				
V _{OLZ}	Cutoff LOW Voltage		-1950		0°C to	$V_{IN} = V_{IH}$ (Min)	n)	(Notes 4, 5,	
				mV	+125°C	or V _{IL} (Max) $\overline{\text{OEN}}$ = HIGH	OEN = HIGH		
			-1850	1	–55°C			6)	
VIH	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIGH Signal for All Inputs		(Notes 4, 5, 6, 7)	
					+125°C				
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW Signal		(Notes 4, 5,	
					+125°C	for All Inputs		6, 7)	
I _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$		(Notes 4, 5,	
					+125°C	$V_{IN} = V_{IL}$ (Min)		6, 7)	
IIH	Input HIGH Current		240	μA	0°C to	V _{EE} = -5.7V		(Notes 4, 5, 6)	
					+125°C	$V_{IN} = V_{IH}$ (Max)			
			340	μA	–55°C	1		0)	
I _{EE}	Power Supply Current				–55°C to	Inputs Open			
		-195	-73	mA	+125°C	$V_{EE} = -4.2V$ to $-4.8V$		(Notes 4, 5,	
		-205	-73			$V_{EE} = -4.2V$ to -5	.7V	6)	

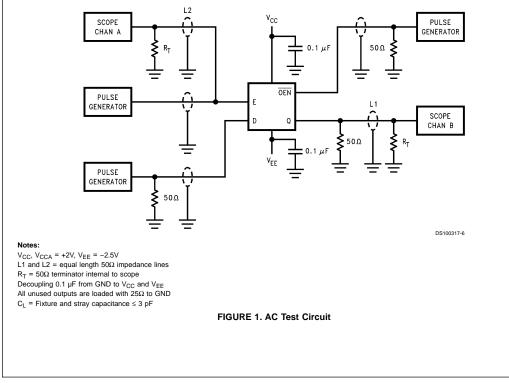
Note 4: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

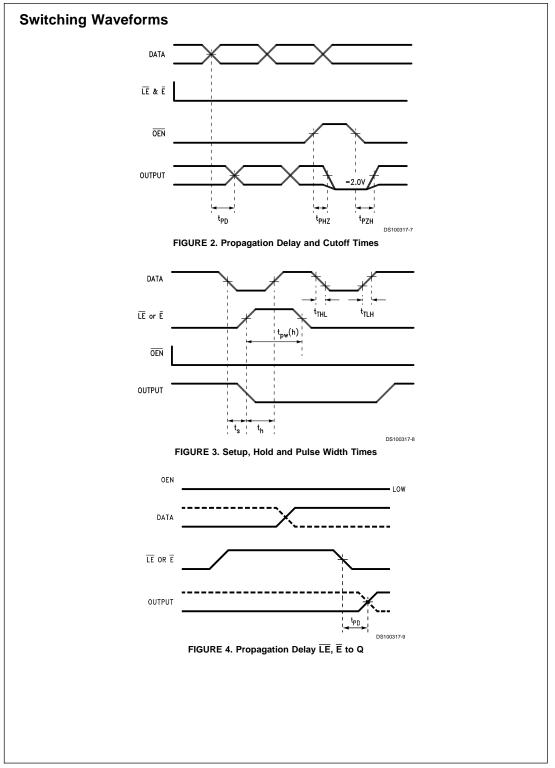
Note 5: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

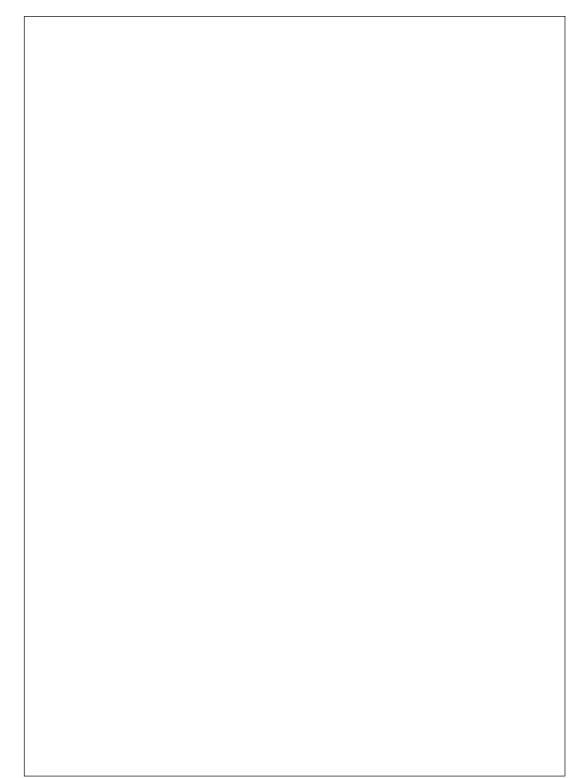
Note 6: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

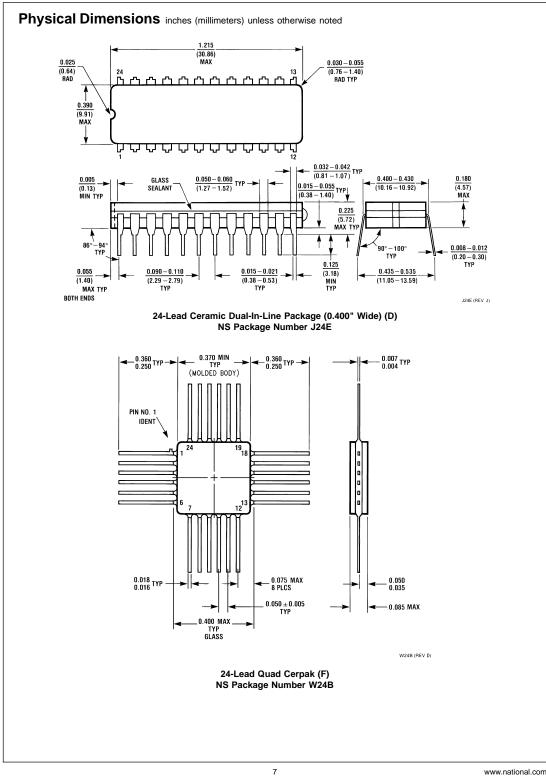
Note 7: Guaranteed by applying specified input condition and testing $V_{\mbox{OH}}/V_{\mbox{OL}}.$

Symbol	Parameter	T _c = -55°C		T _C = +25°C		T _c = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max	1		
t _{PLH}	Propagation Delay	0.50	2.60	0.70	2.60	0.70	3.10	ns	Figures 1, 2	(Notes 8, 9
t _{PHL}	D _n to Output									10, 12)
t _{PLH}	Propagation Delay	0.80	3.30	1.00	3.30	1.10	3.80	ns	Figures 1, 4	(Notes 8, 9
t _{PHL}	LE, E to Output									10, 12)
t _{PZH}	Propagation Delay	1.00	4.60	1.10	4.20	1.20	4.40	ns	Figures 1, 2	(Notes 8, 9
t _{PHZ}	OEN to Output	0.70	3.00	0.70	2.80	0.70	3.20			10, 12)
t _{TLH}	Transition Time	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 3	
t _{THL}	20% to 80%, 80% to 20%									(Note 11)
t _s	Setup Time									(1)-1- (4)
	D ₀ -D ₇	1.50		1.50		1.70		ns	Figures 1, 3	(Note 11)
t _h	Hold Time									(Note 11)
	D ₀ -D ₇	0.60		0.60		0.60		ns	Figures 1, 3	(NOLE II)
t _{pw} (H)	Pulse Width HIGH									(Note 11)
	LE, E	2.40		2.40		2.40		ns	Figures 1, 3	(Note 11)


Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 9: Screen tested 100% on each device at +25 $^\circ\text{C}$ temperature only, Subgroup A9.


Note 10: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 11: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).


Note 12: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0	National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
www.n	Email: support@nsc.com ational.com	English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80	Email: sea.support@nsc.com	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.