July 1998

54ABT244 Octal Buffer/Line Driver with TRI-STATE® Outputs

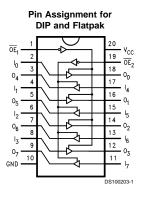
General Description

The 'ABT244 is an octal buffer and line driver with TRI-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/ receiver.

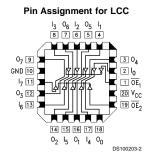
Features

- Non-inverting buffers
- Output sink capability of 48 mA, source capability of 24 mA
- Output switching specified for both 50 pF and 250 pF loads

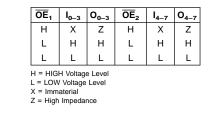
Ordering Code


- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention
- Standard Microcircuit Drawing (SMD) 5962-9214701
- Military
 Package Number
 Package Description

 54ABT244J-QML
 J20A
 20-Lead Ceramic Dual-In-Line


 54ABT244W-QML
 W20A
 20-Lead Cerpack

 54ABT244E-QML
 E20A
 20-Lead Ceramic Leadless Chip Carrier, Type C


Connection Diagrams

Pin	Description			
Names				
$\overline{\text{OE}}_1, \overline{\text{OE}}_2$	Output Enable Input			
	(Active Low)			
I ₀ -I ₇	Inputs			
O ₀ -O ₇	Outputs			

Truth Table

TRI-STATE® is a registered trademark of National Semiconductor Corporation

© 1998 National Semiconductor Corporation DS100203

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Ambient Temperature under Bias	–65°C to +150°C –55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to V_{CC}

Current Applied to Output twice the rated $\rm I_{OL}$ (mA) in LOW State (Max) DC Latchup Source Current –500 mA Over Voltage Latchup (I/O)

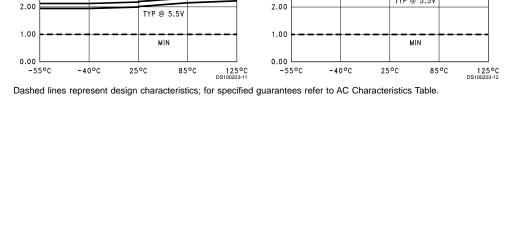
10V

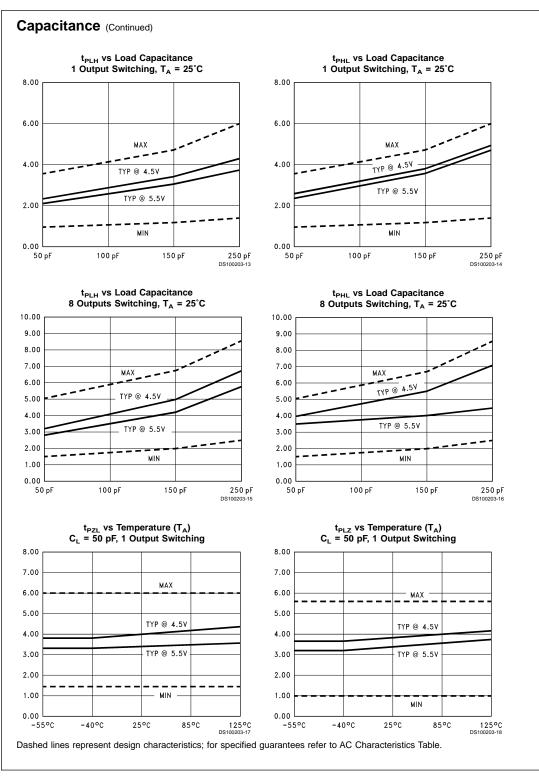
Recommended Operating Conditions

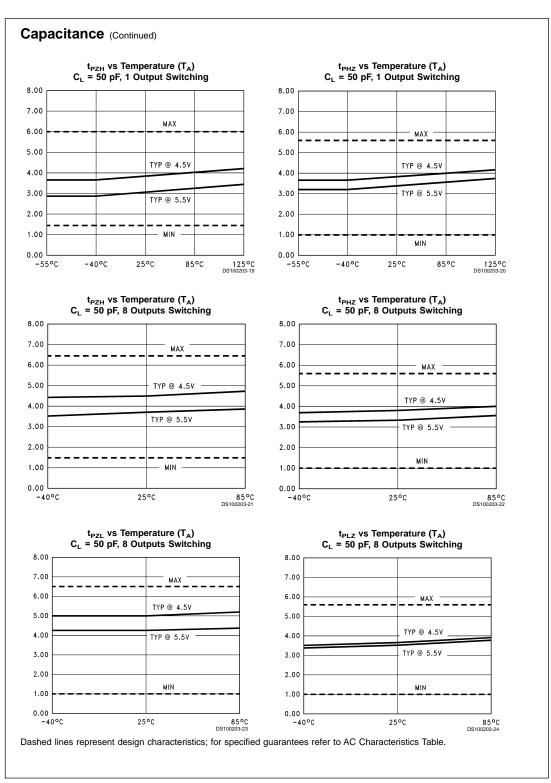
–55°C to +125°C
+4.5V to +5.5V
$(\Delta V/\Delta t)$
50 mV/ns
20 mV/ns

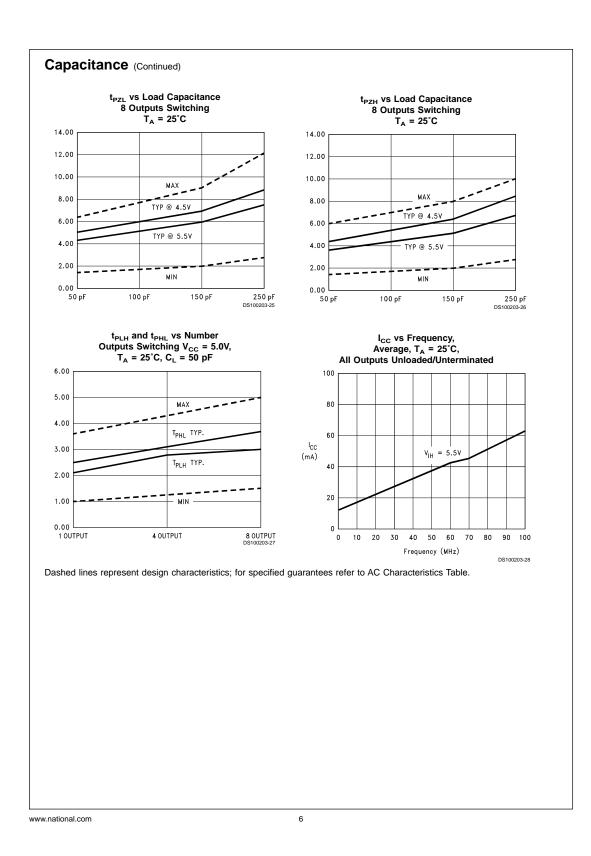
DC Electrical Characteristics

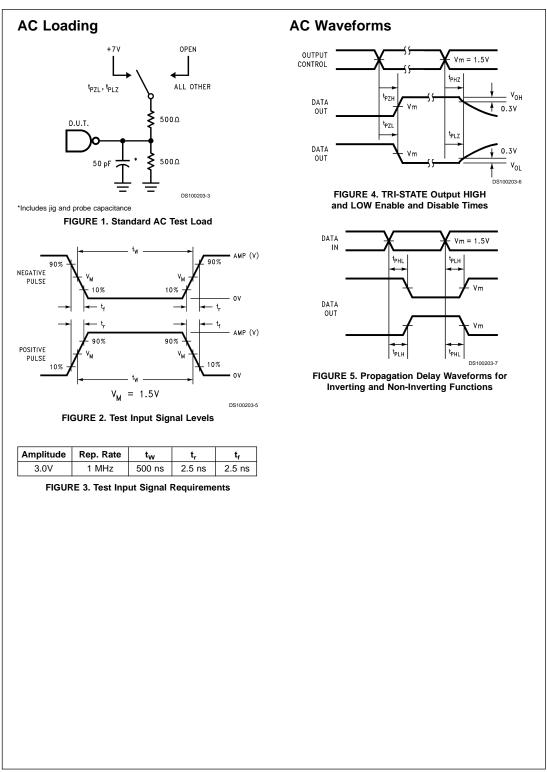
Symbol	Parameter		ABT244		Units	V _{cc}	Conditions	
			Min	Тур	Max	1		
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA
		54ABT	2.0			V	Min	I _{OH} = -24 mA
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
I _{IH}	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current B	reakdown Test			7	μA	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)
					-5			V _{IN} = 0.0V
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{ozh}	Output Leakage Curre	ent			50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curre	ent			-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
los	Output Short-Circuit C	Current	-100		-275	mA	Max	V _{OUT} = 0.0V
I_{CEX}	Output High Leakage	Current			50	μA	Max	$V_{OUT} = V_{CC}$
I_{zz}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Curren	t			50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Curren	t			30	mA	Max	All Outputs LOW
I _{ccz}	Power Supply Curren	t			50	μA	Max	$\overline{OE}_n = V_{CC};$
								All Others at V_{CC} or Ground
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA	Max	$V_{I} = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA		Enable Input V _I = V _{CC} – 2.1V
		Outputs TRI-STATE			50	μA		Data Input V _I = V _{CC} – 2.1V
								All Others at V_{CC} or Ground
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open
	(Note 4)				0.1	MHz		$\overline{OE}_n = GND$, (Note 3)
								One Bit Toggling, 50% Duty Cycle


Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


Note 3: For 8 bits toggling, I_{CCD} < 0.8 mA/MHz.


Note 4: Guaranteed, but not tested.


Symbol	Pa	arameter	:	54ABT	Units	Fig.	
			T _A = -5	5°C to +125°C		No.	
			V _{cc} =	= 4.5V–5.5V			
				= 50 pF			
			Min	Мах			
t _{PLH}	Propaç	pation Delay	1.0	5.3	ns	Figure 5	
t _{PHL}	Data to	o Outputs	1.0	5.0			
t _{PZH}	Output	Enable	0.8	6.5	ns	Figure 4	
t _{PZL}	Time		1.2	7.9			
t _{PHZ}	Output	Disable	1.2	7.6	ns	Figure 4	
t _{PLZ}	Time		1.0	7.9			
Input Cap		Input Capacitance	9	5.0	pF	$V_{\rm CC} = 0V$	
Input C		Input Capacitance	<u>,</u>	5.0	nF		
C _{OUT} (Note 5)		Output Capacitan uency f = 1 MHz, per MII	се	9.0	pF	$V_{CC} = 5.0V$	
Note 5: C _{OUT} is	measured at freq t _{PLH} vs Te	Output Capacitan	ce	9.0 012. t _{PHL} vs		V _{CC} = 5.0V	
Note 5: C _{OUT} is	measured at freq t _{PLH} vs Te	Output Capacitan uency f = 1 MHz, per MII	ce	9.0 0012. C _L = 50 p	pF	V _{CC} = 5.0V	
6.00	measured at freq t _{PLH} vs Te	Output Capacitan uency f = 1 MHz, per MII	Ce	9.0 012. t _{PHL} vs C _L = 50 p	pF	V _{CC} = 5.0V	
6.00 5.00	measured at freq t _{PLH} vs Te	Output Capacitan uency f = 1 MHz, per MII emperature (T _A) Output Switching	Ce	9.0 012. t _{PHL} vs C _L = 50 p 6.00	pF s Temperature (T F, 1 Output Swite	A) ching	
6.00 5.00 4.00	measured at freq t _{PLH} vs Te	Output Capacitan uency f = 1 MHz, per MII emperature (T _A) Output Switching	Ce	9.0 1012. t _{PHL} vs C _L = 50 p 1.00	pF s Temperature (T F, 1 Output Swite	A) ching	

