
# 54ACT112 Dual JK Negative Edge-Triggered Flip-Flop

#### **General Description**

The 'ACT112 contains two independent, high-speed JK flip-flops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on  $\overline{S}_D$  or  $\overline{C}_D$  prevents clocking and forces Q or  $\overline{Q}$  HIGH, respectively. Simultaneous LOW signals on  $\overline{S}_D$  and  $\overline{C}_D$  force both Q and  $\overline{Q}$  HIGH.

#### **Connection Diagram**

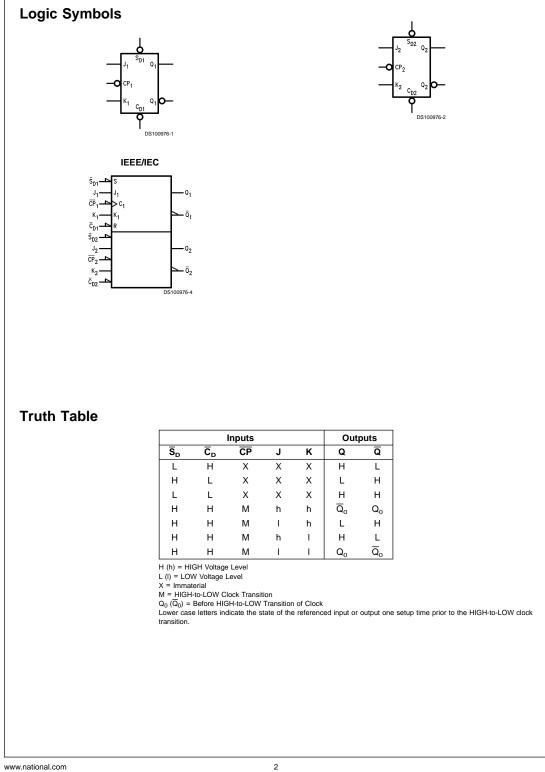


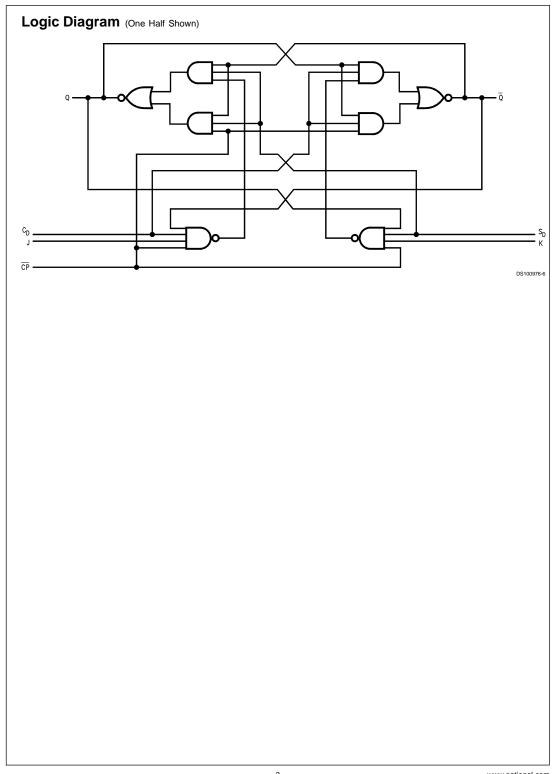


Asynchronous Inputs:

LOW input to  $\overline{S}_D$  sets Q to HIGH level LOW input to  $\overline{C}_D$  sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on  $\overline{C}_D$  and  $\overline{S}_D$  makes both Q and  $\overline{Q}$ HIGH

#### Features


- 'ACT112 has TTL-compatible inputs
- Outputs source/sink 24 mA
  Outputs source/sink 24 mA
- Standard Microcircuit Drawing (SMD) 5962-8995001


#### **Pin Descriptions**

| Pin Names                                                         | Description                      |
|-------------------------------------------------------------------|----------------------------------|
| J <sub>1</sub> , J <sub>2</sub> , K <sub>1</sub> , K <sub>2</sub> | Data Inputs                      |
| $\overline{CP}_1, \overline{CP}_2$                                | Clock Pulse Inputs               |
|                                                                   | (Active Falling Edge)            |
| $\overline{C}_{D1}, \overline{C}_{D2}$                            | Direct Clear Inputs (Active LOW) |
| $\overline{S}_{D1}, \overline{S}_{D2}$                            | Direct Set Inputs (Active LOW)   |
| $Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$                        | Outputs                          |

September 1998

FACT™ is a trademark of Fairchild Semiconductor Corporation.





#### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )<br>DC Input Diode Current (I <sub>IK</sub> ) | -0.5V to +7.0V                 |
|--------------------------------------------------------------------------------|--------------------------------|
| 1 (110                                                                         |                                |
| $V_1 = -0.5V$                                                                  | –20 mA                         |
| $V_{I} = V_{CC} + 0.5V$                                                        | +20 mA                         |
| DC Input Voltage (V <sub>I</sub> )                                             | –0.5V to $V_{CC}$ + 0.5V       |
| DC Output Diode Current (I <sub>OK</sub> )                                     |                                |
| $V_{O} = -0.5V$                                                                | –20 mA                         |
| $V_{O} = V_{CC} + O.5$                                                         | +20 mA                         |
| DC Output Voltage (V <sub>O</sub> )                                            | –0.5V to V <sub>CC</sub> +0.5V |
| DC Output Source                                                               |                                |
| or Sink Current (I <sub>O</sub> )                                              | ±50 mA                         |
| DC V <sub>CC</sub> or Ground Current                                           |                                |
| per Output Pin (I <sub>CC</sub> or I <sub>GND</sub> )                          | ±50 mA                         |
| Storage Temperature (T <sub>STG</sub> )                                        | –65°C to +150°C                |
|                                                                                |                                |

Junction Temperature  $(T_J)$  CDIP

# Recommended Operating Conditions

| Supply Voltage (V <sub>CC</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5V to 5.5V          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Input Voltage (V <sub>I</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0V to $V_{CC}$        |  |  |  |  |
| Output Voltage (V <sub>O</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0V to V <sub>CC</sub> |  |  |  |  |
| Operating Temperature (T <sub>A</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | –55°C to +125°C       |  |  |  |  |
| Minimum Input Edge Rate ( $\Delta V/\Delta t$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125 mV/ns             |  |  |  |  |
| V <sub>IN</sub> from 0.8V to 2.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |  |
| V <sub>CC</sub> @ 4.5V, 5.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |  |  |  |  |
| Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without the set of the set |                       |  |  |  |  |

175°C

to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT<sup>™</sup> circuits outside databook specifications.

#### **DC Characteristics for 'ACT Family Devices**

| Symbol           | Parameter                           | $V_{CC}$ $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ |                   | Units | Conditions                                           |
|------------------|-------------------------------------|-----------------------------------------------------------|-------------------|-------|------------------------------------------------------|
|                  |                                     | (V)                                                       | Guaranteed Limits |       |                                                      |
| V <sub>IH</sub>  | Minimum High Level                  | 4.5                                                       | 2.0               | V     | V <sub>OUT</sub> = 0.1V                              |
|                  | Input Voltage                       | 5.5                                                       | 2.0               |       | or V <sub>CC</sub> – 0.1V                            |
| VIL              | Maximum Low Level                   | 4.5                                                       | 0.8               | V     | V <sub>OUT</sub> = 0.1V                              |
|                  | Input Voltage                       | 5.5                                                       | 0.8               |       | or V <sub>CC</sub> – 0.1V                            |
| V <sub>OH</sub>  | Minimum High Level                  | 4.5                                                       | 4.4               | V     | I <sub>OUT</sub> = -50 μA                            |
|                  | Output Voltage                      | 5.5                                                       | 5.4               |       |                                                      |
|                  |                                     |                                                           |                   |       | V <sub>IN</sub> = V <sub>IL</sub> or V <sub>IH</sub> |
|                  |                                     | 4.5                                                       | 3.70              | V     | I <sub>OH</sub> = -24 mA                             |
|                  |                                     | 5.5                                                       | 4.70              |       | $I_{OH} = -24 \text{ mA}$                            |
|                  |                                     |                                                           |                   |       | (Note 2)                                             |
| V <sub>OL</sub>  | Maximum Low Level                   | 4.5                                                       | 0.1               | V     | I <sub>OUT</sub> = 50 μA                             |
|                  | Output Voltage                      | 5.5                                                       | 0.1               |       |                                                      |
|                  |                                     |                                                           |                   |       | V <sub>IN</sub> = V <sub>IL</sub> or V <sub>IH</sub> |
|                  |                                     | 4.5                                                       | 0.5               | V     | I <sub>OL</sub> = 24 MA                              |
|                  |                                     | 5.5                                                       | 0.5               |       | I <sub>OL</sub> = 24 mA                              |
|                  |                                     |                                                           |                   |       | (Note 2)                                             |
| I <sub>IN</sub>  | Maximum Input Leakage<br>Current    | 5.5                                                       | ± 1.0             | μA    | $V_{I} = V_{CC}, GND$                                |
| ICCT             | Maximum I <sub>CC</sub> /Input      | 5.5                                                       | 1.6               | mA    | $V_{I} = V_{CC} - 2.1V$                              |
| I <sub>OLD</sub> | Minimum Dynamic                     | 5.5                                                       | 50                | mA    | V <sub>OLD</sub> = 1.65V Max                         |
| I <sub>OHD</sub> | Output Current(Note 3)              | 5.5                                                       | -50               | mA    | V <sub>OHD</sub> = 3.85V Min                         |
| I <sub>CC</sub>  | Maximum Quiescent<br>Supply Current | 5.5                                                       | 80.0              | μA    | V <sub>IN</sub> = V <sub>CC</sub> or GND             |

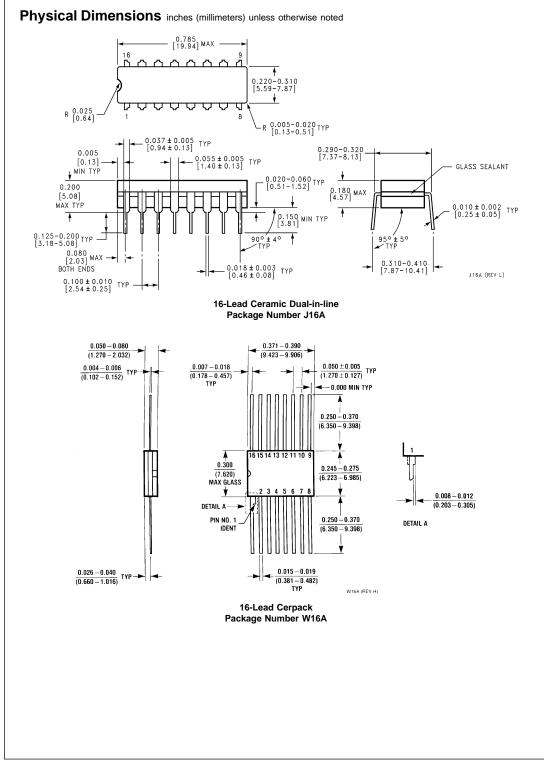
Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

|                                                                         | 00                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                                                                                    |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                         | (V)                                                                                                                                                                                                                                                                                                                                                                              | C <sub>L</sub> = 50 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |
|                                                                         | (Note<br>4)                                                                                                                                                                                                                                                                                                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |
| Maximum Clock                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHz                                                                                                                      |
| Frequency                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |
| Propagation Delay                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                       |
| $CP_n$ to $Q_n$ or $\overline{Q}_n$                                     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |
| Propagation Delay                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                       |
| $CP_n$ to $Q_n$ or $\overline{Q}_n$                                     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |
| Propagation Delay                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                       |
| $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ to $Q_n$ or $\overline{Q}_n$ |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |
| Propagation Delay                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                       |
|                                                                         | $\begin{tabular}{ c c c c c } \hline Frequency & \\ \hline Propagation Delay & \\ \hline CP_n to Q_n \text{ or } \overline{Q}_n & \\ \hline Propagation Delay & \\ \hline CP_n to Q_n \text{ or } \overline{Q}_n & \\ \hline Propagation Delay & \\ \hline \overline{C}_{Dn} \text{ or } \overline{S}_{Dn} \text{ to } Q_n \text{ or } \overline{Q}_n & \\ \hline \end{tabular}$ | Maximum Clock     5.0       Frequency     5.0       Propagation Delay     5.0 $CP_n$ to $Q_n$ or $\overline{Q}_n$ 5.0       Propagation Delay     5.0 $CP_n$ to $Q_n$ or $\overline{Q}_n$ 5.0       Propagation Delay     5.0 $\overline{CP_n}$ to $Q_n$ or $\overline{Q}_n$ 5.0       Propagation Delay     5.0 $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ to $Q_n$ or $\overline{Q}_n$ Propagation Delay     5.0 $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ to $Q_n$ or $\overline{Q}_n$ | Maximum Clock     5.0     80       Frequency     5.0     1.0       Propagation Delay     5.0     1.0       CP <sub>n</sub> to Q <sub>n</sub> or $\overline{Q}_n$ 5.0     1.0       Propagation Delay     5.0     1.0       CP <sub>n</sub> to Q <sub>n</sub> or $\overline{Q}_n$ 5.0     1.0       Propagation Delay     5.0     1.0 $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ to Q <sub>n</sub> or $\overline{Q}_n$ 5.0     1.0       Propagation Delay     5.0     1.0 $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ to Q <sub>n</sub> or $\overline{Q}_n$ 5.0     1.0 | $\begin{tabular}{ c c c c c } \hline Maximum Clock & 5.0 & 80 \\ \hline Frequency & & & & & & & & & & & & & & & & & & &$ |

Note 4: Voltage Range 5.0 is 5.0V ±0.5V

. .


## AC Operating Requirements:


| Symbol           | Parameter                                            | V <sub>CC</sub><br>(V) | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$<br>$C_L = 50 \text{ pF}$ | Units |
|------------------|------------------------------------------------------|------------------------|-------------------------------------------------------------------------|-------|
|                  |                                                      | (Note 5)               | Guaranteed Minimum                                                      |       |
| t <sub>S</sub>   | Setup Time, HIGH or<br>LOW                           | 5.0                    | 8.0                                                                     | ns    |
|                  | $J_n$ or $\overline{K}_n$ to $CP_n$                  |                        |                                                                         |       |
| t <sub>H</sub>   | Hold Time, HIGH or<br>LOW                            | 5.0                    | 1.5                                                                     | ns    |
|                  | $J_n$ or $\overline{K}_n$ to $CP_n$                  |                        |                                                                         |       |
| t <sub>W</sub>   | Pulse Width                                          | 5.0                    | 5.0                                                                     | ns    |
|                  | $CP_n$ or $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ |                        |                                                                         |       |
| t <sub>rec</sub> | Recovery Time                                        | 5.0                    | 3.0                                                                     | ns    |
|                  | $\overline{C}_{Dn}$ or $\overline{S}_{Dn}$ to $CP_n$ |                        |                                                                         |       |

Note 5: Voltage Range 5.0 is 5.0V ±0.5V

### Capacitance

| Symbol          | Parameter                     | Max  | Units | Conditions             |
|-----------------|-------------------------------|------|-------|------------------------|
| C <sub>IN</sub> | Input Capacitance             | 10.0 | pF    | V <sub>CC</sub> = OPEN |
| C <sub>PD</sub> | Power Dissipation Capacitance | 60   | pF    | $V_{CC} = 5.0V$        |





National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.