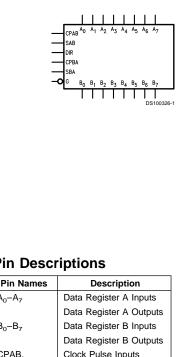
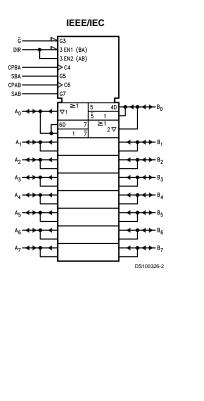
National Semiconductor

54ACTQ646 **Quiet Series Octal Transceiver/Register with 3-STATE** Outputs

General Description


Logic Symbols


The ACTQ646 consist of registered bus transceiver circuits, with outputs, D-type flip-flops, and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CPAB or CPBA). The four fundamental handling functions available are illustrated in Figures 1, 2, 3, 4.

The ACTQ utilizes FSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Independent registers for A and B busses
- Multiplexed real-time and stored data transfers
- 300 mil slim dual-in-line package
- Outputs source/sink 24 mA
- Faster prop delays than the standard AC/ACT646
- 4 kV minimum ESD immunity
- Standard Microcircuit Drawing (SMD) 5962-9219601

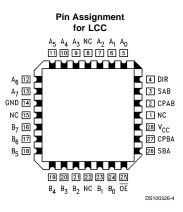
54ACTQ646 Quiet Series Octal Transceiver/Register with 3-STATE Outputs

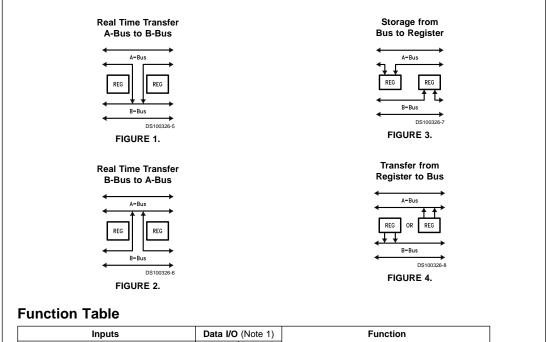
Pin Descriptions

Pin Names	Description
A ₀ -A ₇	Data Register A Inputs
	Data Register A Outputs
B ₀ -B ₇	Data Register B Inputs
	Data Register B Outputs
СРАВ, СРВА	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs

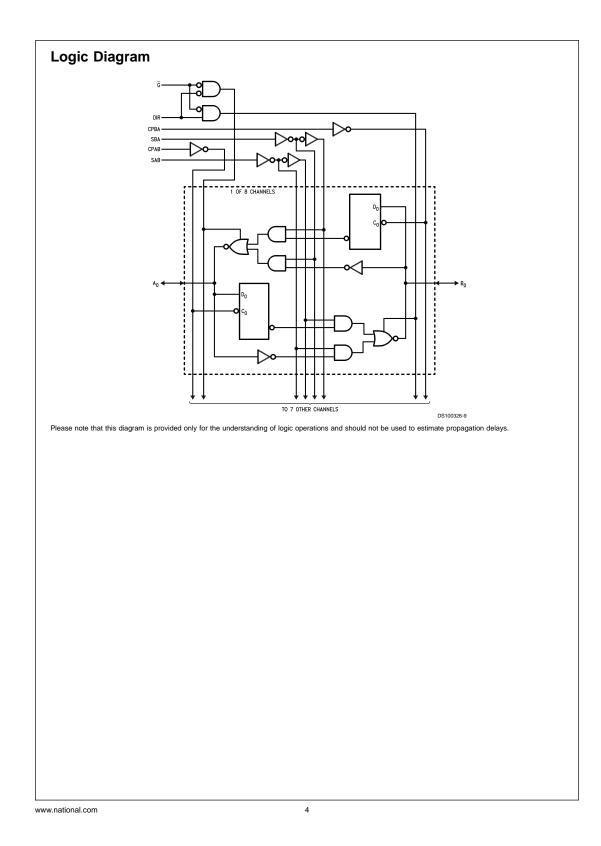
onductor Corporation FACT[™] and FACT Quiet Series[™] are trade arks of Fai

© 1998 National Semiconductor Corporation DS100326


Pin Descriptions (Continued)


Pin Names	Description
G	Output Enable Input
DIR	Direction Control Input

Connection Diagram



	Inputs			Data I/O (Note 1)		Function		
G	DIR	CPAB	СРВА	SAB	SBA	A ₀ -A ₇	B ₀ -B ₇	
н	Х	H or L	H or L	Х	Х			Isolation
н	Х	Ν	Х	Х	Х	Input	Input	Clock An Data into A Register
н	Х	Х	Ν	Х	Х			Clock B _n Data into B Register
L	Н	Х	Х	L	Х			A_n to B_n — Real Time (Transparent Mode)
L	н	Ν	Х	L	Х	Input	Output	Clock A _n Data into A Register
L	н	H or L	Х	н	Х			A Register to B _n (Stored Mode)
L	н	Ν	Х	н	Х			Clock A _n Data into A Register and Output to B _n
L	L	Х	Х	Х	L			B_n to A_n — Real Time (Transparent Mode)
L	L	Х	Ν	Х	L	Output	Input	Clock B _n Data into B Register
L	L	Х	H or L	Х	н			B Register to A _n (Stored Mode)
L	L	х	Ν	Х	н			Clock B _n Data into B Register and Output to A _n

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

N = LOW-to-HIGH Transition

Note 1: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.

Absolute Maximum Ratings (Note 2)

. .

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_1 = -0.5V$	–20 mA
$V_{1} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
DC Latch-Up Source	
or Sink Current	±300 mA

Junction Temperature (T_J) CDIP 175°C **Recommended Operating** Conditions Supply Voltage (V_{CC}) ACTQ 4.5V to 5.5V 0V to $V_{\rm CC}$ Input Voltage (VI) 0V to $V_{\rm CC}$ Output Voltage (V_O) Operating Temperature (T_A) 54ACTQ -55°C to +125°C Minimum Input Edge Rate $\Delta V/\Delta t$ ACTQ Devices $V_{\rm IN}$ from 0.8V to 2.0V 125 mV/ns

V_{ICC} @ 4.5V, 5.5V 125 mV/ns Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for ACTQ

Symbol	Parameter	Vcc	T _A =	Units	Conditions	
		(V) –55°C to +125°C				
		Guaranteed Limits				
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V	
VIL	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V	
V _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = –50 μA	
	Output Voltage	5.5	5.4			
					(Note 3) V _{IN} = V _{IL} or V _{IH}	
		4.5	3.7	V	I _{OH} = –24 mA	
		5.5	4.7		I _{он} = –24 mA	
V _{OL}	Maximum Low Level	4.5	0.1	V	Ι _{ΟUT} = 50 μΑ	
	Output Voltage	5.5	0.1			
					(Note 3) V _{IN} = V _{IL} or V _{IH}	
		4.5	0.5	V	I _{OL} = 24 mA	
		5.5	0.5		I _{OL} = 24 mA	
I _{IN}	Maximum Input	5.5	±1.0	μA	V _I = V _{CC} , GND	
	Leakage Current					
I _{OZT}	Maximum I/O				$V_{I} = V_{IL}, V_{IH}$	
	Leakage Current	5.5	±10.0	μA	$V_{O} = V_{CC}, GND$	
	(A _n , B _n Inputs)					
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$	
	(Note 4)					
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min	
I _{cc}	Maximum Quiescent Supply Current	5.5	160.0	μΑ	V _{IN} = V _{CC} or GND (Note 5)	

DC Electrical Characteristics for ACTQ (Continued)

Symbol	Parameter	V _{cc} (V)			Conditions
			Guaranteed Limits		
V _{OLP}	Quiet Output	5.0	1.5	V	
	Maximum Dynamic				(Note 6)
	V _{OL}				
VOLV	Quiet Output	5.0	-1.2	V	
	Minimum Dynamic				(Note 6)
	V _{OL}				

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

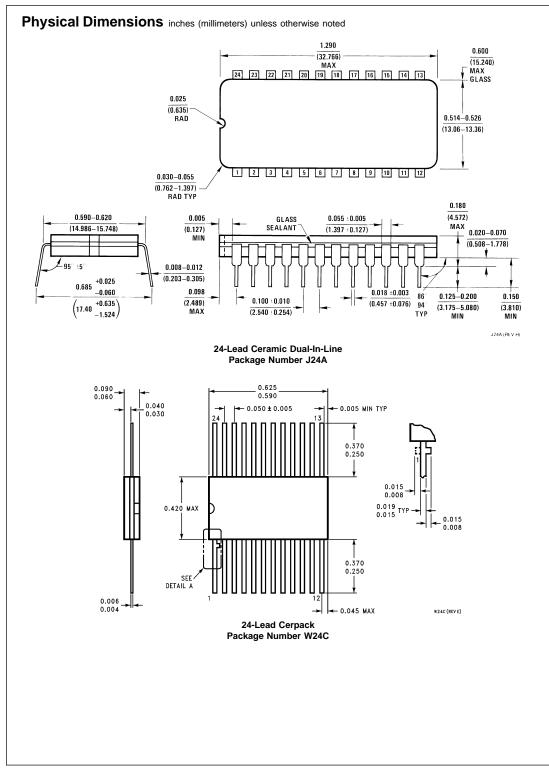
Note 5: I_{CC} for 54ACTQ @ 25°C is identical to 74ACQ @ 25°C.

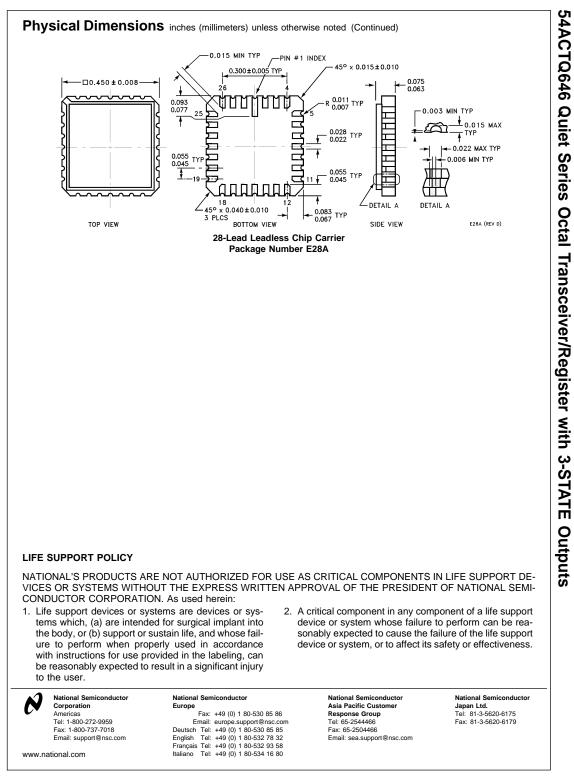
. .

Note 6: Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND.

AC Electrical Characteristics

Symbol	Parameter	V _{cc} (V) (Note 7)	T _A = -55°0 C _L =	Units	
		-	Min	Max	_
t _{PLH} ,	Propagation Delay	5.0	2.0	11.0	ns
t _{PHL}	Clock to Bus				
t _{PLH} ,	Propagation Delay	5.0	2.0	12.0	ns
t _{PHL}	Bus to Bus				
t _{PLH,}	Propagation Delay				
t _{PHL}	SBA or SAB to A _n or B _n	5.0	2.0	12.5	ns
	(w/A _n or B _n HIGH or LOW)				
t _{PZH} ,	Enable Time	5.0	1.5	15.0	ns
t _{PZL}	\overline{G} to A_n or B_n				
t _{PHZ} ,	Disable Time	5.0	1.5	12.0	ns
t _{PLZ}	\overline{G} to A_n or B_n				
t _{PZH} ,	Enable Time	5.0	1.5	15.0	ns
t _{PZL}	DIR to A _n or B _n				
t _{PHZ} ,	Disable Time	5.0	1.5	12.0	ns
t _{PLZ}	DIR to A _n or B _n				


Note 7: Voltage Range 5.0 is 5.0V $\pm 0.5V$


AC Operating Requirements

Symbol	Parameter	V _{cc} (V) (Note 8)	T _A = −55°C to +125°C C _L = 50 pF	Units
			Guaranteed Minimum	-
t _S	Setup Time, HIGH or LOW	5.0	3.0	ns
	Bus to Clock			
t _H	Hold Time, HIGH or LOW	5.0	1.5	ns
	Bus to Clock			
t _W	Clock Pulse Width	5.0	4.0	ns
	HIGH or LOW			

Capacitance

Symbol	Parameter	Max	Units	Conditions
CIN	Input Capacitance	15	pF	V _{CC} = OPEN
C _{I/O}	Input/Output Capacitance	20.0	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation	100.0	pF	$V_{CC} = 5.0V$
	Capacitance			

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.