August 1995

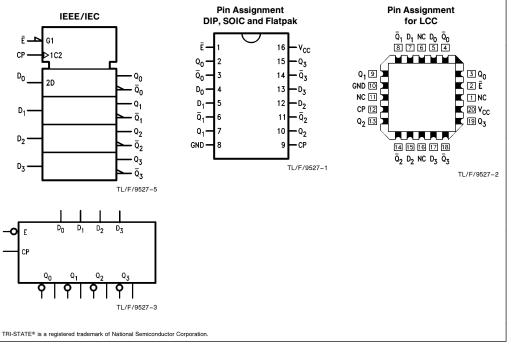
National Semiconductor

54F/74F379 **Quad Parallel Register with Enable**

General Description

The 'F379 is a 4-bit register with buffered common Enable. This device is similar to the 'F175 but features the common Enable rather than common Master Reset.

Features


- Edge triggered D-type inputs
- Buffered positive edge-triggered clock
- Buffered common enable input True and complement outputs
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description			
74F379PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line			
	54F379DM (QB)	J16A	16-Lead Ceramic Dual-In-Line			
74F379SC (Note 1)		M16A	16-Lead (0.300" Wide) Molded Small Outline, JEDEC			
74F379SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F379FM (QB)	W16A	16-Lead Cerpack			
	54F379LM (QB)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Logic Symbols

Connection Diagrams

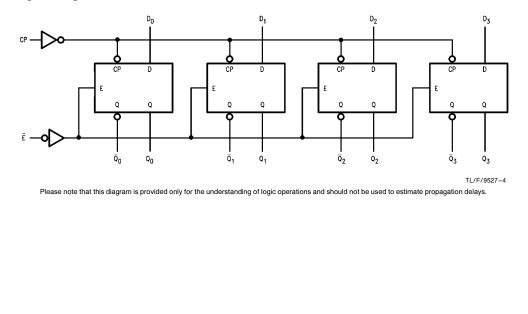
© 1995 National Semiconductor Corporation TL/F/9527 RRD-B30M115/Printed in U. S. A.

54F/74F379 Quad Parallel Register with Enable

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
Ē	Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA		
$D_0 - D_3$	Data Inputs	1.0/1.0	20 µA/−0.6 mA		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/−0.6 mA		
$Q_0 - Q_3$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA		
$\overline{Q}_0 - \overline{Q}_3$	Complement Outputs	50/33.3	-1 mA/20 mA		

Functional Description


The 'F379 consists of four edge-triggered D-Type flip-flops with individual D inputs and Q and \overline{Q} outputs. The Clock (CP) and Enable (\overline{E}) inputs are common to all flip-flops. When the \overline{E} is input HIGH, the register will retain the present data independent of the CP input. The D_n and \overline{E} inputs can change when the clock is in either state, provided that the presented active and held times are observed. recommended setup and hold times are observed.

Truth Table

	Inputs	Outputs			
Ē	СР	D _n	Qn	<u>Q</u> n	
н		х	NC	NC	
L		Н	н	L	
L		L	L	Н	

Logic Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output	-0.5V to V _{CC}
TRI-STATE® Output	-0.5V to +5.5V
Current Applied to Output in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltge (Min)	4000V
Note 1: Absolute maximum ratings are value	

NOTE I: AUSOUTE maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

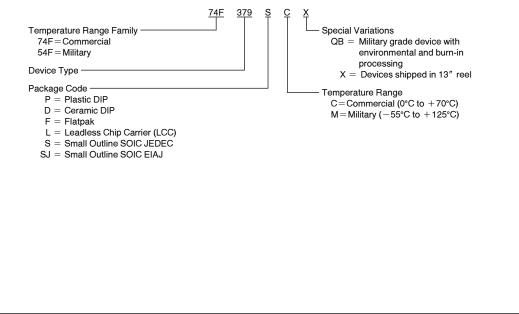
Recommended Operating Conditions

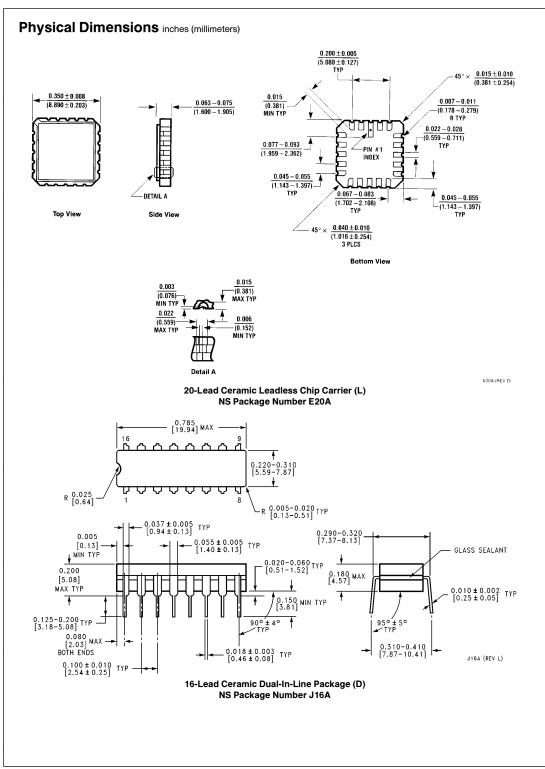
Free Air Ambient Temperature Military Commercial Supply Voltage Military Commercial

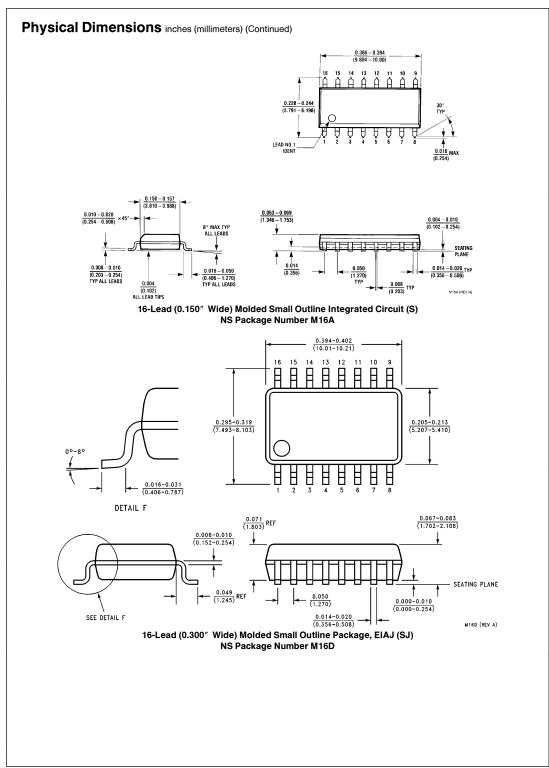
0°C to +70°C +4.5V to +5.5V +4.5V to +5.5V

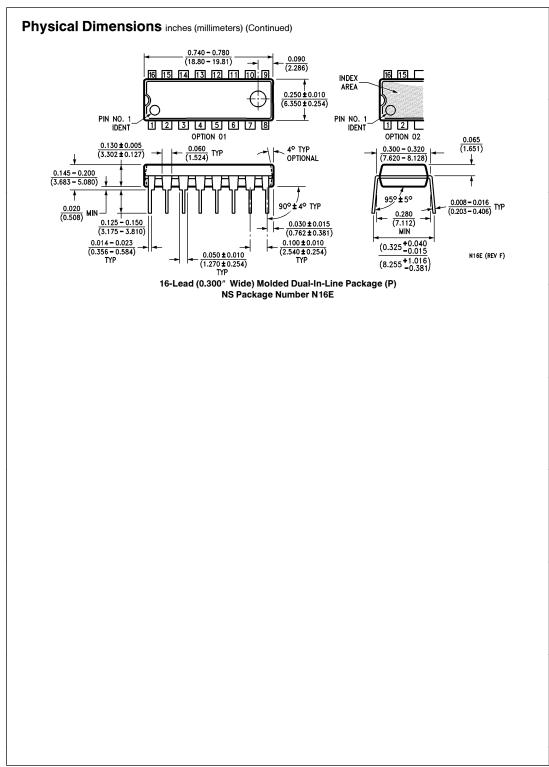
-55°C to +125°C

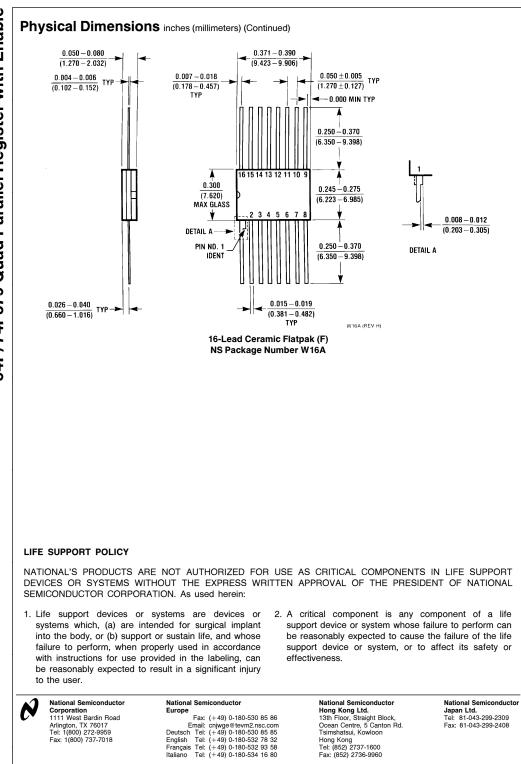
Symbol	Parameter		54F/74F			Units	Vcc	Conditions	
Symbol	Falante			Min	Тур	Max	Units	VCC	Conditions
VIH	Input HIGH Voltage			2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage					0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage				-1.2	V	Min	$I_{\rm IN} = -18 \rm mA$
V _{OH}	Output HIGH Voltage	54F 74F 74F	10% V _{CC} 10% V _{CC} 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 74F	10% V _{CC} 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
IIH	Input HIGH Current	54F 74F				20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F				100 7.0	μΑ	Max	$V_{IN} = 7.0V$
I _{CEX}	Output HIGH Leakage Current	54F 74F				250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F		4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F				3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
Ι _{ΙL}	Input LOW Current					-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit C	Current		-60		-150	mA	Max	$V_{OUT} = 0V$
	Power Supply Curren	t			28	40	mA	Max	V _O = LOW


AC Electrical Characteristics											
Symbol		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units		
	Parameter										
		Min	Тур	Max	Min	Мах	Min	Мах			
f _{max}	Maximum Clock Frequency	100	140		75		100		MHz		
t _{PLH} t _{PHL}	Propagation Delay CP to Q_n, \overline{Q}_n	3.5 5.0	5.0 6.5	6.5 8.5	3.0 4.0	8.5 10.0	3.5 5.0	7.5 9.5	ns		


AC Operating Requirements


		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		54	F	74F		
Symbol	Parameter			$\mathbf{T}_{\mathbf{A}}, \mathbf{V}_{\mathbf{CC}} = \mathbf{Mil}$		$T_A, V_{CC} = Com$		Units
		Min	Max	Min	Max	Min	Мах	
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to CP	3.0 3.0		4.0 4.0			3.0 3.0	ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to CP	1.0 1.0		2.0 2.0			1.0 1.0	113
t _s (H) t _s (L)	Setup Time, HIGH or LOW \overline{E} to CP	6.0 6.0		8.0 8.0			6.0 6.0	ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW Ē to CP	0 0		0 0			0 0	113
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	4.0 5.0		5.0 7.0			4.0 5.0	ns


Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.