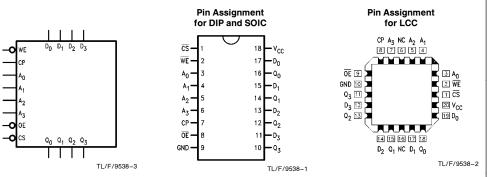
54F/74F410 Register Stack—16 x 4 RAM TRI-STATE Output Register

54F/74F410 Register Stack—16 x 4 RAM TRI-STATE® Output Register

General Description

The 'F410 is a register-oriented high-speed 64-bit Read/ Write Memory organized as 16-words by 4-bits. An edgetriggered 4-bit output register allows new input data to be written while previous data is held. TRI-STATE outputs are provided for maximum versatility. The 'F410 is fully compatible with all TTL families.

Features


- Edge-triggered output register
- Typical access time of 35 ns
- TRI-STATE outputs
- Optimized for register stack operation
- 18-pin package
- 9410 replacement

Commercial	Military	Package Number	Package Description
74F410PC		N18A	18-Lead (0.300" Wide) Molded Dual-In-Line
	54F410DM (Note 1)	J18A	18-Lead Ceramic Dual-In-Line
74F410SC		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
54F410LM		W20A	20-Lead Cerpak

Note 1: Military grade device with environmental and burn-in processing. Use suffix = DMQB, LMQB

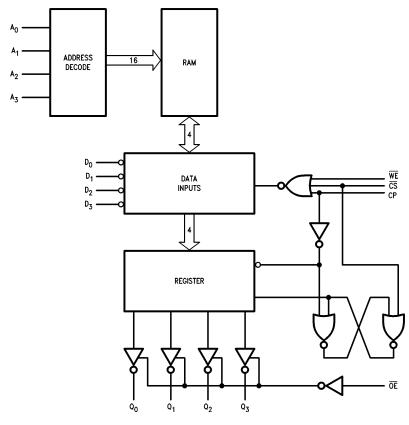
Logic Symbol

Connection Diagrams

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
A ₀ -A ₃	Address Inputs	1.0/1.0	20 μA/ – 0.6 mA			
D ₀ -D ₃	Data Inputs	1.0/1.0	20 μA/ – 0.6 mA			
CS	Chip Select Input (Active LOW)	1.0/2.0	20 μA/ – 1.2 mA			
ŌĒ	Output Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
WE	Write Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
CP	Clock Input (Outputs Change on					
	LOW-to-HIGH Transition)	1.0/2.0	20 μA/ – 1.2 mA			
Q ₀ -Q ₃	TRI-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)			


Functional Description

Write Operation—When the three control inputs, Write Enable (WE), Chip Select (\overline{CS}), and Clock (CP), are LOW the information on the data inputs (D₀-D₃) is written into the memory location selected by the address inputs (A₀-A₃). If the input data changes while WE, \overline{CS} , and CP are LOW, the contents of the selected memory location follow these changes, provided setup and hold time criteria are met.

Read Operation—Whenever $\overline{\text{CS}}$ is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the address inputs (A₀-A₃) are edge-triggered into the Output Register.

The (\overline{OE}) input controls the output buffers. When \overline{OE} is HIGH the four outputs (O_0-O_3) are in a high impedance or OFF state; when \overline{OE} is LOW, the outputs are determined by the state of the Output Register.

Block Diagram

TL/F/9538-4

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to } + 150^{\circ}\mbox{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with V_{CC} = 0V)

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Supply Voltage

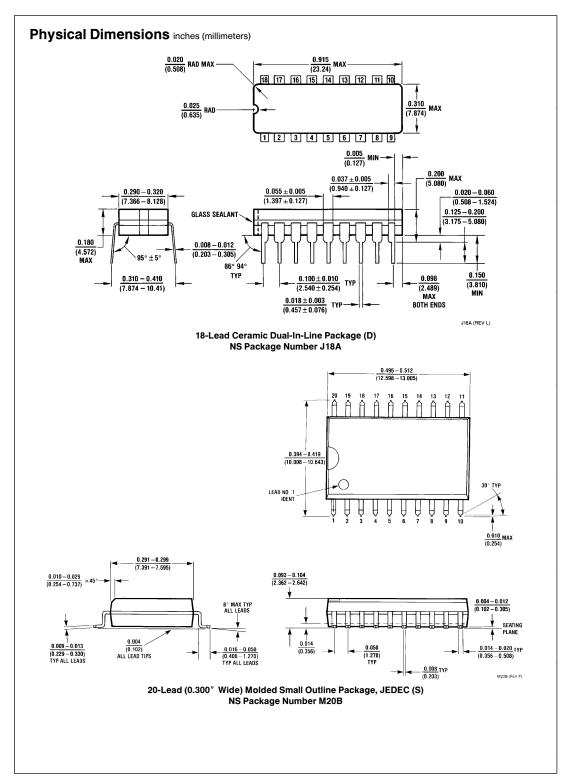
Military +4.5V to +5.5V Commercial +4.5V to +5.5V

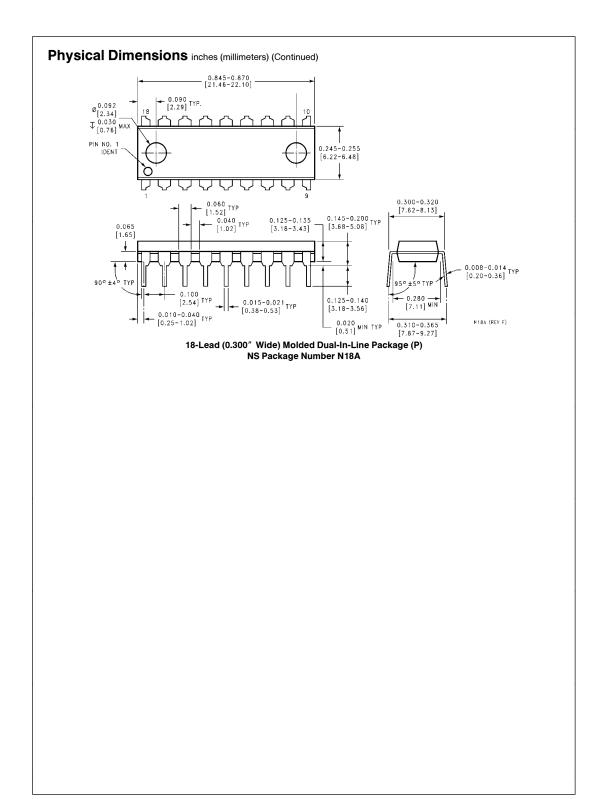
DC Electrical Characteristics

Symbol	Parameter -		54F/74F			Units	v _{cc}	Conditions	
Symbol			Min	Тур	Max	Units	VCC	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$	
V _{OL}	Output LOW 54F 10% V _{CC} Voltage 74F 10% V _{CC}				0.5 0.5	٧	Min	I _{OL} = 20 mA I _{OL} = 24 mA	
lін	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage 74F		4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
IIL	Input LOW Current				-0.6 -1.2	mA	Max	$V_{IN} = 0.5V (A_n, D_n, \overline{OE}, \overline{WE})$ $V_{IN} = 0.5V (\overline{CS}, CP)$	
l _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
lozL	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V	
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	

DC Electrical Characteristics (Continued)									
Symbol	Parameter -		54F/74F		Units	v _{cc}	Conditions		
		Min	Тур	Max	Onito				
Icch	Power Supply Current		47	70	mA	Max	V _O = HIGH		
ICCL	Power Supply Current		47	70	mA	Max	$V_O = LOW$		
I _{CCZ}	Power Supply Current		47	70	mA	Max	V _O = HIGH Z		

AC Electrical Characteristics


		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		54F T _A , V _{CC} = Mil C _L = 50 pF		7-	Units	
Symbol	Parameter					T _A , V _{CC} = Com C _L = 50 pF		
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay CP to Q	3.0 3.5	8.5 9.0	2.5 3.0	11.0 12.0	2.5 3.0	9.5 10.0	ns
t _{PZH}	Enable Time OE to Q	3.0 3.5	8.0 9.0	2.5 3.0	10.5 13.0	2.5 3.0	9.0 10.0	
t _{PHZ}	Disable Time OE to Q	2.5 2.5	6.5 7.0	2.0 2.0	8.5 9.5	2.0 2.0	7.5 8.0	ns


AC Operating Requirements

Symbol		$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		54	lF.	74F		
	Parameter			$T_A,V_{CC}=Mil$		T _A , V _{CC} = Com		Units
		Min	Max	Min	Max	Min	Max	1
READ MODE	E							
t _S (H)	Setup Time, HIGH or LOW A _n to CP	15.0 15.0		23 23		17.0 17.0		
t _h (H)	Hold Time, HIGH or LOW A _n to CP	0 0		0		0		ns
WRITE MOD	DE							
t _s (H) t _s (L)	Setup Time, HIGH or LOW A _n to WE	0 0		0		0		
t _h (H)	Hold Time, HIGH or LOW A _n to WE	0 0		0		0		ns
t _s (H)	Setup Time, HIGH or LOW D _n to WE	5.0 5.0		8.5 8.5		6.0 6.0		
t _h (H)	Hold Time, HIGH or LOW D _n to WE	0 0		2.5 2.5		0		ns
t _w	WE Pulse Width Required to Write	7.5		9.5		8.5		ns
t _w	CS Pulse Width Required to Write	7.5		9.5		8.5		ns
t _w	CP Pulse Width Required to Write	7.5		9.5		8.5		ns

Note: Military temperature range for this device is -40°C to $+85^{\circ}\text{C}$.

Ordering Information The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows: 74F 410 S C Special Variations X = Devices shipped in 13" reels QB = Military grade device with environmental and burn-in Temperature Range Family 74F = Commercial 54F = Military Device Type processing Package Code P = Plastic DIP S = Small Outline (SOIC) D = Ceramic DIP L = Package Leadless Chip Carrier Temperature Range C = Commercial (0°C to +70°C) M = Military (-55°C to +125°C)

Physical Dimensions inches (millimeters) (Continued) 0.090 0.060 0.540 MAX 0.040 0.050 ± 0.005 0.005 MIN TYP 0.030 TYP 0.370 0.270 0.260 0.285 MAX GLASS 0.012 DETAIL A 0.370 0.250 DETAIL A IDENT

20-Lead Cerpack NS Package Number W20A

0.045 MAX

0.019

LIFE SUPPORT POLICY

0.006

0.004

TYP

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 81 Italiano Tel: (+49) 0-180-532 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

W20A (REV E)