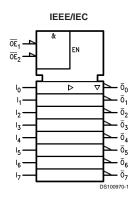


54FCT540

Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

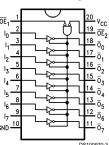

The 'FCT540 is an octal buffer/line drivers designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers.

These devices are similar in function to the 'FCT240 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes these devices especially useful as output ports for microprocessors, allowing ease of layout and greater PC board density.

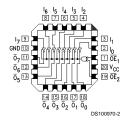
Features

- TRI-STATE inverting outputs
- Inputs and outputs opposite side of package, allowing easier interface to microprocessors
- TTL input and output level compatible
- CMOS power consumption
- Output sink capability of 48mA, source capability of 12
- Standard Microcircuit Drawing (SMD) 5962-8976701

Logic Symbol



Inputs			Outputs
OE₁	OE ₂	I	
L	L	Н	L
Н	Χ	Χ	Z
X	Н	Χ	Z
L	L	L	Н


- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial Z = High Impedance

Connection Diagrams

Pin Assignment for DIP and Flatpak

Pin Assignment for LCC

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V $_{\rm CC}$) $$-0.5{\rm V}$ to +7.0{\rm V}$$ DC Input Diode Current (I $_{\rm IK}$)

 $V_{\rm I} = -0.5 V$

 $V_{\rm I} = V_{\rm CC} + 0.5 \mbox{V}$ +20 mA DC Input Voltage (V_I) -0.5V to $V_{\rm CC} + 0.5 \mbox{V}$

DC Output Diode Current (I_{OK})

 $\begin{array}{c} {\rm V_O} = -0.5{\rm V} & -20~{\rm mA} \\ {\rm V_O} = {\rm V_{CC}} + 0.5{\rm V} & +20~{\rm mA} \\ {\rm DC~Output~Voltage~(V_O)} & -0.5{\rm V~to~V_{CC}} + 0.5{\rm V} \\ \end{array}$

DC Output Source

or Sink Current (I_O)

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ±50 mA

Storage Temperature (T_{STG}) $-65^{\circ}C$ to +150 $^{\circ}C$ Junction Temperature (T_{J}) CDIP 175 $^{\circ}C$

Recommended Operating Conditions

Supply Voltage (V_{CC})

-20 mA

±50 mA

 $\begin{tabular}{lll} 'FCT & 2.0V to 6.0V \\ Input Voltage (V_i) & 0V to V_{CC} \\ Output Voltage (V_O) & 0V to V_{CC} \\ \end{tabular}$

Operating Temperature (T_A)

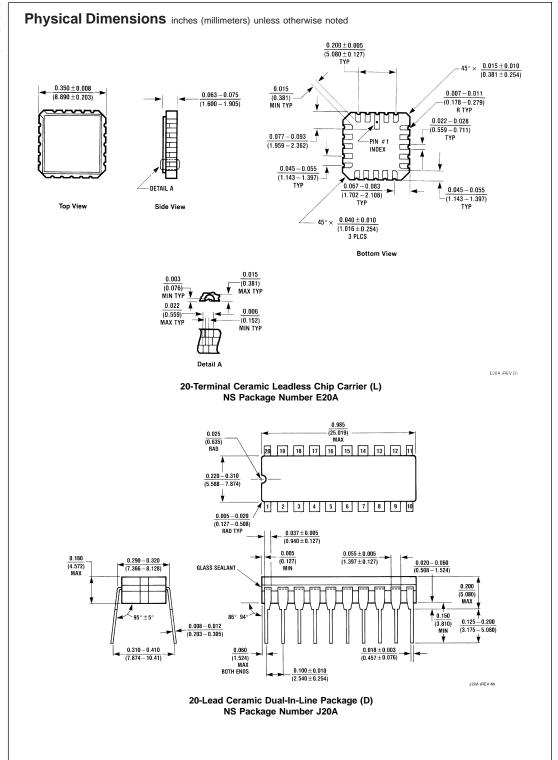
54FCT -55°C to +125°C

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT® circuits outside databook specifications.

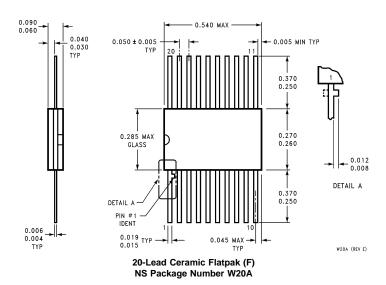
DC Characteristics for 'FCT Family Devices

Symbol	Parameter		FCT540		Units	V _{cc}	Conditions
			Min	Max	1		
V _{IH}	Input HIGH Voltage		2.0		V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54FCT	4.3		V	Min	I _{OH} = -300 μA
		54FCT	2.4		V	Min	I _{OH} = -12 mA
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	I _{OL} = 300 μA
		54FCT		0.55	V	Min	I _{OL} = 48 mA
I _{IH}	Input HIGH Current			5	μΑ	Max	V _{IN} = V _{CC}
I _{IL}	Input LOW Current			-5	μΑ	Max	V _{IN} = 0.0V
I _{OZH}	Output Leakage Current			10	μA	Max	$V_{OUT} = 5.5V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Current			-10	μΑ	Max	$V_{OUT} = 0.0V; \overline{OE}_n = 2.0V$
Ios	Output Short-Circuit Current			-60	mA	Max	V _{OUT} = 0.0V
I _{CCQ}	Quiescent Power Supply Current			1.5	mA	Max	V_{IN} < 0.2V or V_{IN} 5.3V, V_{CC} = 5.5V
ΔI_{CC}	Quiescent Power Supply Current			2.0	mA	Max	$V_I = V_{CC} - 2.1V$
I _{CCD}	Dynamic I _{CC}			0.4	mA/ MHz	Max	V_{CC} = 5.5V, Outputs Open, One Bit Toggling, 50% Duty Cycle, \overline{OE}_n = GND
I _{CC}	Total Power Supply Current			6.0	mA	Max	V _{CC} = 5.5V, Outputs Open, fI = 10MHz, \overline{OE}_n = GND, One Bit Toggling, 50% Duty Cycle

Note 2: All outputs loaded: thresholds on input associated with output under test.


Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics


Symbol	Parameter	$T_A = -55^{\circ}($ $V_{CC} = 4$	$54FCT$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$		
		Min	Max		
t _{PLH}	Propagation Delay	2.0	9.5	ns	
t _{PHL}	Data to Outputs	2.0	9.5		
t _{PZH}	Output Enable Time	2.0	12.5	ns	
t_{PZL}		2.0	12.5		
t _{PHZ}	Output Disable Time	2.0	12.5	ns	
t_{PLZ}		2.0	12.5		

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation	30.0	pF	V _{CC} = 5.0V
	Capacitance			

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507