

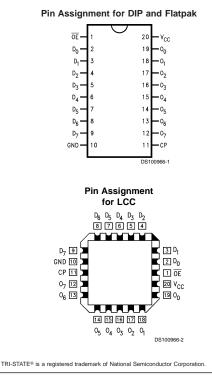
54FCT574 Octal D-Type Flip-Flop with TRI-STATE® Outputs

General Description

The 'FCT574 is an octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\text{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The device is functionally identical to the 'FCT374 except for the pinouts.

October 1999


Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'FCT374
- TRI-STATE outputs for bus-oriented applications
- Output sink capability of 32 mA, source capability of 12 mA
- TTL input and output level compatible
- CMOS power consumption
- Standard Microcircuit Drawing (SMD) 5962-8951301

Ordering Code

Military	Package Number	Package Description
54FCT574DMQB	J20A	20-Lead Ceramic Dual-In-Line
54FCT574FMQB	W20A	20-Lead Cerpack
54FCT574LMQB	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Connection Diagrams

Pin Descriptions

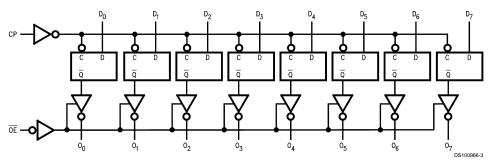
Pin	Description
Names	
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input
	(Active Rising Edge)
OE	TRI-STATE Output Enable
	Input (Active LOW)
0 ₀ -0 ₇	TRI-STATE Outputs

© 1999 National Semiconductor Corporation DS100966

Functional Description

The 'FCT574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their indi-vidual D inputs that meet the setup and hold times require-ments on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs are in a high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table


	Inputs		nputs Internal Outputs		Function
OE	СР	D	Q	0	
Н	H or L	L	NC	Z	Hold

Inputs		Internal	Outputs	Function		
OE	СР	D	Q	0		
н	H or L	Н	NC	Z	Hold	
н	Ν	L	L	Z	Load	
н	Ν	Н	н	Z	Load	
L	Ν	L	L	L	Data Available	
L	Ν	Н	н	н	Data Available	
L	H or L	L	NC	NC	No Change in Data	
L	H or L	Н	NC	NC	No Change in Data	

H = HIGH Voltage Level

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance N = LOW-to-HIGH Transition NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	-55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output in	
the Disabled or Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to $V_{\rm CC}$

Current Applied to Output in LOW State (Max) twice the rated $\rm I_{OL}~(mA)$ DC Latchup Source Current

Recommended Operating Conditions

Free Air Ambient Temperature

Military

Military Supply Voltage -55°C to +125°C +4.5V to +5.5V

–500 mA

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		FCT574		Units	V _{cc}	Conditions	
			Min	Max	1			
V _{IH}	Input HIGH Voltage		2.0		V		Recognized HIGH Signal	
VIL	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH	54FCT	4.3		V	Min	I _{OH} = -300 μA	
	Voltage	54FCT	2.4		V	Min	I _{OH} = -12 mA	
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	I _{OL} = 300 μA	
	Output LOW Voltage	54FCT		0.5	V	Min	I _{OL} = 32mA	
I _{IH}	Input HIGH Current			5	μA	Max	V _{IN} = 2.7V (Note 3)	
				5			$V_{IN} = V_{CC}$	
I _{IL}	Input LOW Current			-5	μA	Max	V _{IN} = 0.5V (Note 3)	
				-5			$V_{IN} = 0.0V$	
I _{ozh}	Output Leakage Current			10	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$	
I _{OZL}	Output Leakage Current			-10	μΑ	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$	
l _{os}	Output Short-Circuit Current		-60		mA	Max	V _{OUT} = 0.0V	
Icca	Power Supply Current			1.5	mA	Max	$V_{IN} = 0.2V$ or $V_{IN} = 5.3V$, $f_I = 0MHz$	
ΔI_{CC}	Power Supply Current			2.0	mA	Max	V _{IN} = 3.4V	
I _{CCT}	Additional I _{CC} /Input			6.0	mA	Мах	$V_I = V_{CC} - 2.1V \text{ or } V_{IN} = \text{GND}, f_{CP} = 10\text{MHz}, \text{ Outputs open}, \overline{\text{OE}} = \text{GND}, \text{ one bit toggling at } f_I = 5\text{MHz}, 50\% \text{ duty cycle}$	
				5.5	mA	Мах	$V_I = 5.3V$ or $V_{CC} = 0.2V$, $f_{CP} = 10MHz$, Outputs open, $\overline{OE} = GND$, one bit toggling at $f_I = 5MHz$, 50% duty cycle	
I _{CCD}	Dynamic I _{CC} No Load			0.40	mA/ MHz	Max	Outputs Open, \overline{OE} = GND, One bit toggling, 50% duty cycle, V _{IN} = 5.3V or V _{IN} = 0.2V	

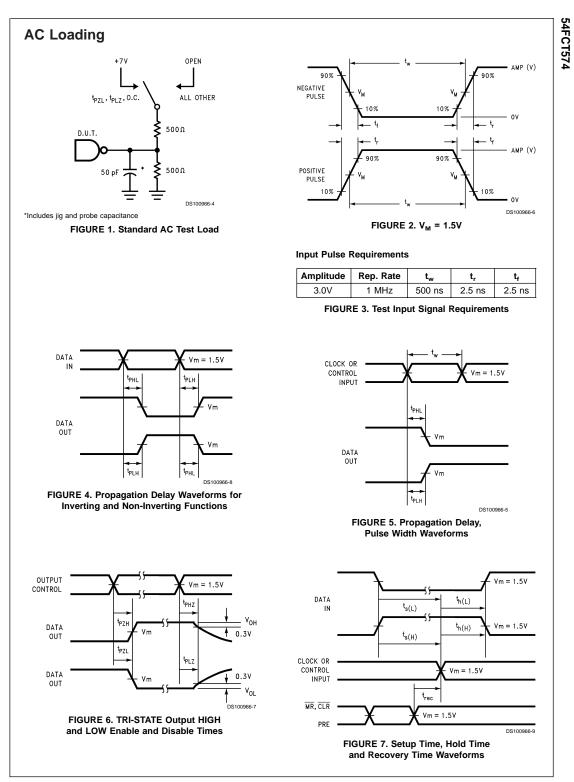
3

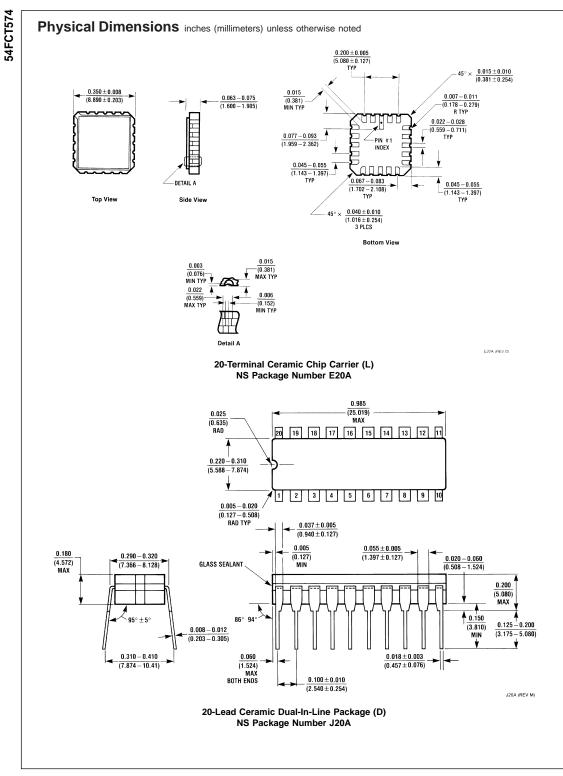
Note 3: Guaranteed, but not tested.

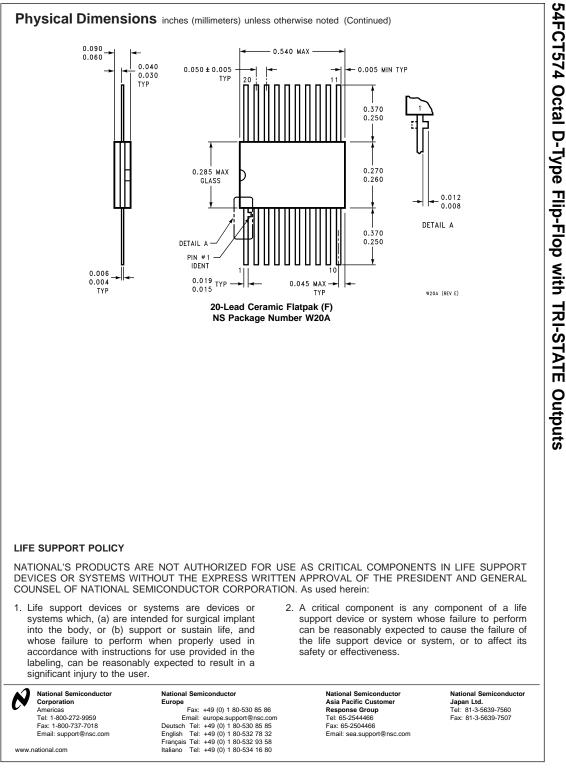
www.national.com

54FCT574

		54F	СТ		Fig.
		T _A = -55°C	to +125°C	- 1	No.
Symbol	Parameter	$V_{cc} = 4.5V$ to 5.5V		Units	
		C _L = 5	50 pF		
		Min	Max	1	
t _{PLH}	Propagation Delay	2.0	11.0	ns	Figure 4
t _{PHL}	CP to O _n	2.0	11.0		
t _{PZH}	Output Enable Time	1.5	14.0	ns	Figure 6
t _{PZL}		1.5	14.0		
t _{PHZ}	Output Disable Time	1.5	8.0	ns	Figure 6
t _{PLZ}		1.5	8.0		


AC Operating Requirements


Symbol	Parameter	$T_{A} = -55^{\circ}C$ $V_{CC} = 4.5$	FCT C to +125°C 5V to 5.5V 50 pF	Units	Fig. No.	
		Min	Max			
t _s (H)	Setup Time, HIGH	3.5		ns	Figure 7	
t _s (L)	or LOW D _n to CP	3.5				
t _h (H)	Hold Time, HIGH	2.0		ns	Figure 7	
t _h (L)	or LOW D _n to CP	2.0				
t _w (H)	Pulse Width, CP,	7.0		ns	Figure 5	
t _w (L)	HIGH or LOW	7.0				


Capacitance

Symbol	Parameter	Тур	Units	Conditions
				T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{\rm CC} = 0V$
C _{OUT} (Note 4)	Output Capacitance	9.0	pF	$V_{\rm CC} = 5.0 V$

Note 4: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.