Functional Description

The LCX16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs andTRI-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time require ments on the LOW-to-HIGH Clock (CP_{n}) transition. With the Output Enable ($\overline{\mathrm{OE}}_{\mathrm{n}}$) LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the outputs go to the high impedance state. Operation of the OE_{n} input does not affect the state of the flip-flops.

Inputs			Outputs
CP_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{7}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
	L	H	H
	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
CP_{2}	$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{\mathbf{8}}-\mathrm{I}_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
	L	H	H
	L	L	L
L	L	X	O_{0}
X	H	X	Z

$\mathrm{H}=$ High Voltage Leve
L = Low Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH to LOW of CP

Logic Diagrams

Byte 2 (8:15)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office Distributors for availability and specifications.

Supply Voltage (V_{cc})	-0.5 V to +7.0 V
DC Input Voltage (V_{1})	-0.5 V to +7.0 V
DC Input Diode Current ($1_{1 K}$)	
$V_{1}<$ GND	-50 mA
DC Output Diode Current (l_{OK})	
$\mathrm{V}_{\mathrm{O}}<$ GND	-50mA
$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{Cc}}$	$+50 \mathrm{~mA}$
DC Output Voltage (V_{o}) (Note 2)	
Output in High or Low State	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output in TRI-STATE	-0.5 V to 7.0 V
DC Output Source or Sink	
Current (1)	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current	$\pm 100 \mathrm{~mA}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{STG}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissapation	750 mW
Junction Temperature (T_{J})	$175^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 3)| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2.0 V to 3.6 V |
| :--- | ---: |
| \quad Operating | 1.5 V to 3.6 V |
| Data Retention | 0 V to 5.5 V |
| Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$ | |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | 0 V to V_{CC} |
| High or Low State | 0 V to 5.5 V |
| TRI-STATE | $-55^{\circ} \mathrm{C}$ to |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $+125^{\circ} \mathrm{C}$ |

Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$
V_{IN} from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \quad 0 \mathrm{~ns} / \mathrm{V}$ to $10 \mathrm{~ns} / \mathrm{V}$ Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be oper ated at these limits. The parametric values defined in the Electrical Charac teristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: I_{0} Absolute Maximum Rating must be observed.
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
$\mathrm{V}_{\text {OH }}$	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
V_{OL}	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
I_{1}	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OFF }}$	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{cc}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.7-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 20	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in I_{CC} per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

Note 4: Skew is defined as the absolute value of the difference between the actual propagation delay for any two seperate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (toshL) or LOW to HIGH (tosLH). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	1.2	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley V_{OL}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	-1.1	V

Capacitance

Symbol	Parameter	Conditions	Max	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	12	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	40	pF

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Ceramic Flatpack
Package Number WA48A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 180-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 180-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

