

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
5.5 V

Operating Free Air Temperature Range
MIL
Recommended Operating Conditions

Symbol	Parameter	93L00 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Voltage			-0.4	mA
lOL	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time HIGH or LOW, $\mathrm{J}, \overline{\mathrm{K}}$ and P0-P3 to CP	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW, $\mathrm{J}, \overline{\mathrm{K}}$ and P0-P3 to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time HIGH or LOW, $\overline{\text { PE to CP }}$	$\begin{aligned} & 68 \\ & 68 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW, $\overline{\text { PE to CP }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 38 \\ & 38 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width LOW	53			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	70			ns

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)							
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V I	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			CP			40	
			$\overline{\mathrm{PE}}$			46	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$	Inputs			-400	$\mu \mathrm{A}$
			CP			-800	
			$\overline{\mathrm{PE}}$			-920	
IOS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$		-2.5		-25	mA
$I_{\text {CC }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				23	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.							

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	93L		Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	10		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}		$\begin{array}{r} 35 \\ 51 \\ \hline \end{array}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{M R}$ to Q_{n}		60	ns

Functional Description

The Logic Diagrams and Truth Table indicate the functional characteristics of the 93L00 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers.
The 93L00 has two primary modes of operation, shift right $(\mathrm{QO} \rightarrow \mathrm{Q1})$ and parallel load, which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. When the PE input is HIGH, serial data enters the first flip-flop Q0 via the J and $\overline{\mathrm{K}}$ inputs and is shifted one bit in the direction Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3 following each LOW-to-HIGH clock transition. The $\sqrt{\mathrm{K}}$ inputs provide the flexibility of the JK type input for special applications, and the simple D-type input for general applications by tying the two pins together.

When the $\overline{\mathrm{PE}}$ input is LOW, the 93L00 appears as four common clocked D flip-flops. The data on the parallel inputs P0-P3 is transferred to the respective Q0-Q3 outputs following the LOW-to-HIGH clock transition. Shift left operation (Q3 \rightarrow Q2) can be achieved by tying the Qn outputs to the $\mathrm{Pn}-1$ inputs and holding the $\overline{\mathrm{PE}}$ input LOW.
All serial and parallel data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. Since the 93L00 utilizes edge triggering, there is no restriction on the activity of the J, \bar{K}, Pn and $\overline{\mathrm{PE}}$ inputs for logic operation-except for the setup and release time requirements. A LOW on the asynchronous Master Reset ($\overline{\mathrm{MR}}$) input sets all Q outputs LOW, independent of any other input condition.

Truth Table

Operating Mode	Inputs ($\overline{\mathrm{MR}}=\mathrm{H}$)							Outputs @ $\mathrm{t}_{\mathrm{n}+1}$				
	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	PO	P1	P2	P3	Q0	Q1	Q2	Q3	Q3
Shift Mode	H	L	L	X	X	X	X	L	Q0	Q1	Q2	Q2
	H	L	H	X	X	X	X	Q0	Q0	Q1	Q2	Q2
	H	H	L	X	X	X	X	Q0	Q0	Q1	Q2	Q2
	H	H	H	X	X	X	X	H	Q0	Q1	Q2	Q2
Parallel	L	X	X	L	L	L	L	L	L	L	L	H
Entry Mode	L	X	X	H	H	H	H	H	H	H	H	L

[^0]

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: $t_{n+1}=$ Indicates state after next LOW-to-HIGH clock transition.
 $\mathrm{H}=$ HIGH Voltage Level
 L = LOW Voltage Level
 $\mathrm{X}=$ Immaterial

