CLC532
 High-Speed 2:1 Analog Multiplexer

General Description

The CLC532 is a high-speed 2:1 multiplexer with active input and outputstages. The CLC532 also employs a closed-loop design which dramatically improves accuracy. This monolithic device is constructed using an advanced high-performance bipolar process.

The CLC532 has been specifically designed to provide settling times of 17 ns to 0.01%. This, coupled with the adjustable noise-bandwidth, makes the CLC532 an ideal choice for infrared and CCD imaging systems. Channel-to-channel isolation is better than $80 \mathrm{~dB} @$ 10 MHz . Low distortion (80 dBc) and spurious signal levels make the CLC532 a very suitable choice for both I/Q processors and receivers.

The CLC532 is offered over both the industrial and military temperature ranges. The Industrial versions, CLC532AJP\AJE\AID, are specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are packaged in 14-pin plastic DIP's, 14-pin SOIC's and 14-pin Side-Brazed packages. The extended temperature versions, CLC532A8B/A8D/A8L-2, are specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are packaged in a 14-pin hermetic DIP and 20-terminal LCC packages. (Contact factory for LCC and CERDIP availability.)

Ordering Information ...

CLC532AJP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-pin plastic DIP
CLC532AJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-pin plastic SOIC
CLC532ALC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	dice
CLC532AMC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	dice, MIL-STD-833
CLC532A8B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-pin CERDIP; MIL-STD-883
CLC532A8L-2A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-terminal LCC; MIL-STD-883

Features

■ 12-bit settling (0.01%) - 17ns
■ Low noise $-32 \mu \mathrm{Vrms}$
■ High isolation - 80dB @ 10MHz
■ Low distortion-80dBc @ 5MHz

- Adjustable bandwidth - 190MHz (max)

Applications

■ Infrared system multiplexing

- CCD sensor signals

■ Radar I/Q switching

- High definition video HDTV
- Test and calibration

Pinout
DIP \& SOIC

$$
\left.\begin{array}{l}
\text { GND }\left[\begin{array}{ll}
1 & 14
\end{array}\right]+\mathrm{V}_{\mathrm{CC}} \\
\mathrm{IN}_{\mathrm{A}}[2 \\
\mathrm{GND}^{2} \\
\hline
\end{array}\right]+\mathrm{V}_{\mathrm{CC}}
$$

Electrical Characteristics $\left(+\mathrm{V}_{\mathrm{cc}}=+5 . \mathrm{OV} ;-\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} ; \mathrm{R}_{\mathrm{W}}=50 \Omega ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{C}_{\text {comp }}=10 \mathrm{pF} ; \mathrm{ECL}\right.$ Mode, pin $\left.6=\mathrm{NC}\right)$

PARAMETER ${ }^{1}$ CONDITIONS	TYP	MAX/MIN RATINGS ${ }^{2}$			UNITS	SYMBOL
Case Temperature CLC532AJP/AJE/AIB	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$		
FREQUENCY DOMAIN PERFORMANCE	190 45 0.2 1.0 2.0 0.05 0.01 80 74 68	$\begin{aligned} & 140 \\ & 35 \\ & 0.7 \\ & 1.8 \\ & \\ & \\ & 75 \\ & 69 \\ & 63 \end{aligned}$	$\begin{aligned} & 140 \\ & 35 \\ & 0.7 \\ & 1.8 \\ & \\ & 75 \\ & 69 \\ & 63 \end{aligned}$	$\begin{aligned} & 110 \\ & 30 \\ & 0.8 \\ & 2.6 \\ & \\ & \\ & 74 \\ & 68 \\ & 62 \end{aligned}$	MHz MHz dB dB deg \% deg dB dB dB	SSBW LSBW GFP GFR LPD DG DP CT10 CT20 CT30
TIME DOMAIN PERFORMANCE	$\begin{aligned} & 2.7 \\ & 10 \\ & 35 \\ & 17 \\ & 13 \\ & 2 \\ & 160 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 12.5 \\ & \\ & 24 \\ & 18 \\ & 5 \\ & 130 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 12.5 \\ & \\ & 24 \\ & 18 \\ & 5 \\ & 130 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 14.5 \\ & \\ & 27 \\ & 21 \\ & 6 \\ & 110 \end{aligned}$	ns ns ns ns ns \% $\mathrm{V} / \mu \mathrm{s}$	TRS TRL TS14 TSP TSS OS SR
SWITCH PERFORMANCE	$\begin{aligned} & 5 \\ & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 7 \\ & 20 \end{aligned}$	$\begin{aligned} & 7 \\ & 20 \end{aligned}$	$\begin{aligned} & 8 \\ & 23 \end{aligned}$	$\begin{array}{\|l} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{mV} \end{array}$	$\begin{aligned} & \text { SWT10 } \\ & \text { SWT90 } \\ & \text { ST } \end{aligned}$
DISTORTION AND NOISE PERFORMANCE	$\begin{aligned} & 80 \\ & 86 \\ & 3.1 \\ & 32 \\ & 3 \end{aligned}$	67 68 42	67 68 42	$\begin{aligned} & 67 \\ & 68 \\ & 46 \end{aligned}$	dBc dBc $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{Vrms}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$	HD2 HD3 SNF INV SNC
STATIC AND DC PERFORMANCE * analog output offset voltage temperature coefficient analog output offset voltage matching * analog input bias current temperature coefficient analog input bias current matching analog input resistance analog input capacitance gain accuracy $\pm 2 \mathrm{~V}$ gain matching $\pm 2 \mathrm{~V}$ integral endpoint non-linearity $\pm 1 \mathrm{~V}$ (full scale) output voltage no load output current output resistance dc	$\begin{aligned} & 1 \\ & 15 \\ & \text { TBD } \\ & 50 \\ & 0.3 \\ & \text { TBD } \\ & 200 \\ & 2 \\ & 0.998 \\ & \text { TBD } \\ & 0.02 \\ & \pm 3.4 \\ & 45 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 90 \\ & \\ & 250 \\ & 2.0 \\ & \\ & 90 \\ & 3.0 \\ & 0.988 \\ & \\ & 0.05 \\ & 2.4 \\ & 20 \\ & 4.0 \end{aligned}$	3.5 120 120 2.5 0.988 0.03 2.8 30 2.5	$\begin{aligned} & 5.5 \\ & 20 \\ & \\ & 120 \\ & 0.8 \\ & \\ & 120 \\ & 2.5 \\ & 0.988 \\ & \\ & 0.03 \\ & 2.8 \\ & 30 \\ & 2.5 \end{aligned}$	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ mV $\mu \mathrm{A}$ $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mathrm{k} \Omega$ pF V/V V/V \%FS V mA Ω	VOS DVIO VOSM IBN DIBN IBNM RIN CIN GA GAM ILIN VO 10 RO
DIGITAL INPUT PERFORMANCE ECL mode (pin 6 floating) input voltage logic HIGH input voltage logic LOW input current logic HIGH input current logic LOW TTL mode (pin $6=+5 \mathrm{~V}$) input voltage logic HIGH input voltage logic LOW input current logic HIGH input current logic LOW	$\begin{aligned} & 14 \\ & 50 \\ & \\ & 14 \\ & 50 \end{aligned}$	$\begin{aligned} & -1.1 \\ & -1.5 \\ & 50 \\ & 270 \\ & \\ & 2.0 \\ & 0.8 \\ & 50 \\ & 270 \end{aligned}$	$\begin{aligned} & -1.1 \\ & -1.5 \\ & 30 \\ & 110 \\ & \\ & 2.0 \\ & 0.8 \\ & 30 \\ & 110 \end{aligned}$	$\begin{aligned} & -1.1 \\ & -1.5 \\ & 30 \\ & 110 \\ & 2.0 \\ & 0.8 \\ & 30 \\ & 110 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ V V $\mu \mathrm{A}$ $\mu \mathrm{A}$	VIH1 VIL1 IIH1 IIL1 VIH2 VIL2 IIH2 IIL2
POWER REQUIREMENTS * supply current ($+\mathrm{V}_{\mathrm{cC}}=+5.0 \mathrm{~V}$) no load * supply current ($-\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$) no load nominal power dissipation no load * power supply rejection ratio	$\begin{aligned} & 23 \\ & 24 \\ & 240 \\ & 73 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \\ & 60 \end{aligned}$	$\begin{aligned} & 28 \\ & 30 \\ & 64 \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \\ & 64 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \\ & \mathrm{~dB} \end{aligned}$	ICC IEE PD PSRR

$\overline{\mathrm{Min}} / \mathrm{max}$ ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

Absolute Maximum Ratings ${ }^{3}$

positive supply voltage $\left(+\mathrm{V}_{\mathrm{CC}}\right)$
negative supply voltage $\left(-\mathrm{V}_{\mathrm{EE}}\right)$
differential voltage between any two GND's
analog input voltage range
SELECT input voltage range (TTL mode)
SELECT input voltage range (ECL mode)
$\mathrm{C}_{\text {Comp }}$ range ${ }^{2}$

thermal data
14-pin plastic
14-pin Cerdip
14-pin SOIC
20-terminal LCC
-5.2 V or -5.0 V
10 mV
$\pm 2 \mathrm{~V}$
0.0 V to +3.0 V
-2.0 V to 0.0 V $0 p F$ to 100 pF
positive supply voltage ($+\mathrm{V}_{\mathrm{CC}}$)
negative supply voltage $\left(-\mathrm{V}_{\mathrm{EE}}\right)$
differential voltage between any two GND's
analog input voltage range
digital input voltage range
output short circuit duration (output shorted to GND)
junction temperature
operating temperature range
CLC532AJP/AJE/AIB $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
storage temperature range
lead solder duration $\left(+300^{\circ} \mathrm{C}\right)$
ESD rating
transistor count
-0.5 V to +7.0 V
+0.5 V to -7.0 V 200 mV
$-V_{E E}$ to $+V_{C C}$
$-\mathrm{V}_{\mathrm{EE}}^{\mathrm{EE}}$ to $+\mathrm{V}_{\mathrm{Cc}}^{\mathrm{Cc}}$ Infinite $+150^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 10 sec $<500 \mathrm{~V}$

Note 1: Test levels are as follows:
AJ : 100% tested at $+25^{\circ} \mathrm{C}$.
Note 2: The CLC532 does not require external $\mathrm{C}_{\text {comp }}$ capacitors for proper operation.

Note 3: Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to maximum ratings for extended periods may affect device reliability.

System Timing Diagram

... where TSx is TS14 or TSP or TSS, and TRx is TRS ro TSL.

Switching Transient Timing Diagram

CLC532 Electrical Characteristics ($+25^{\circ} \mathrm{C}$ unless specified)

CLC532 Electrical Characteristics ($+25^{\circ} \mathrm{C}$ unless specified)

Differential Phase vs. Frequency (Negative Sync)

Transient Isolation

Time (50ns/div)

Differential Gain vs. Frequency (Negative Sync)

Equivalent Input Noise

Time (20 ns/div)

2-Tone, 3rd Order Intermodulation Intercept

Integral Linearity Error

Applications Information

Operation

The CLC532 is a 2:1 analog multiplexer with high-impedance buffered inputs, and a low-impedance, low-distortion, output stage. The CLC532 employs a closed-loop design, which dramatically improves accuracy. The channel SELECT control (Figure 1) determines which of the two inputs $\left(\mathrm{IN}_{A}\right.$ or $\left.\mathrm{IN}_{B}\right)$ is present at the OUTPUT. Beyond the basic multiplexer function, the CLC532 offers compatibility with either TTL or ECL logic families, as well as adjustable bandwidth.

Figure 1: Standard CLC532 Circuit Configuration

Digital Interface and Channel SELECT

The CLC532 functions with ECL, TTL and CMOS logic families. $D_{\text {REF }}$ controls logic compatibility. In normal operation, $D_{\text {REF }}$ is left floating, and the channel SELECT responds to ECL level signals, Figure 2. For TTL or CMOS level SELECT inputs (Figure 3), $\mathrm{D}_{\text {REF }}$ should be tied to +5 V (the CLC532 incorporates an internal 2300Ω series isolation resistor for the $D_{\text {REF }}$ input). For TTL or CMOS operation, the channel SELECT requires a resistor input network to prevent saturation of the channel select circuitry. Without this input network, channel SELECT logic levels above 3 V will cause internal junction saturation and slow switching speeds.

CLC532

Figure 2: ECL Level Channel SELECT Configuration

Figure 3: TTL/CMOS Level Channel SELECT Configuration

Compensation

The CLC532 incorporates compensation nodes that allow both its bandwidth and its settling time/slew rate to be adjusted. Bandwidth and settling time/slew adjustments are linked, meaning that lowering the bandwidth also lowers slew rate and lengthens settling time. Proper adjustment (compensation) is necessary to optimize system performance. Time Domain applications should generally be optimized for lowest RMS noise at the CLC532 output, while maintaining settling time and slew rates at adequate levels to meet system needs. Frequency Domain applications should generally be optimized for maximally flat frequency response.

Figure 4 below describes the basic relationship between bandwidth and R_{S} for various values of load capacitance, C_{L}, where $\mathrm{C}_{\text {COMP }}=10 \mathrm{pF}$.

Figure 4: Settling Time and R_{S} vs. C_{L}
Figure 5 shows the resulting changes in bandwidth and slew rate for increasing values of $\mathrm{C}_{\text {сомр }}$. The RMS noise at the CLC532 output can be approximated as:

$$
\text { OUTPUT }_{\text {NOISE }_{\text {RMS }}}=\left(n_{\mathrm{V}}\right)\left(\sqrt{1.57^{*} \mathrm{BW}_{-3 \mathrm{~dB}}}\right)
$$

where... $\mathrm{n}_{\mathrm{v}}=$ input spot noise voltage; $\mathrm{BW}_{-3 \mathrm{~dB}}=$ Bandwidth is from figure 5.

Figure 5: $\mathrm{C}_{\text {comp }}$ for Maximally Flat Frequency Response

Power Supplies and Grounding

Proper power supply bypassing and grounding is essential to the CLC532's operation. A $0.1 \mu \mathrm{~F}$ to 0.01 mF ceramic chip capacitor should be located as close as possible to the individual power supply pins. Larger $+6.8 \mu \mathrm{~F}$ tantalum capacitors should be used within a few inches of the CLC532. The ground connections for these larger by-pass capacitors should be very symmetrically located relative the CLC532 output load ground connection. Harmonic distortion can be heavily influenced by non-symmetric decoupling capacitor grounding. The smaller chip capacitors located directly at the power supply pins are not particularly susceptible to this effect.

Separation of analog and digital ground planes is not recommended. In most cases, a single low-impedance ground plane will provide the best performance. In those special cases requiring separate ground planes, the following table indicates the signal and supply ground connections.

Pin	Functions	Ground Return
1,3	Shield /Supply Returns	Supplies and Inputs
5	$D_{\text {REF }}$ Ground	$D_{\text {REF }}$ Currents Only

Input Shielding

The CLC532 has been designed for use in high-speed widedynamic range systems. Guard-ring traces and the use of the ground pins separating the analog inputs are recommended to maintain high isolation (Figure 6). Likely sources of noise and interference that may couple onto the inputs, are the logic signals and power supplies to the CLC532. Other types of clock and signal traces should not be overlooked, however.

Figure 6: Alternate Layout Using Guard Ring
The general rule in maintaining isolation has two facets, minimize the primary return ground current path impedances back to the respective signal sources, while maximizing the impedance associated with common or secondary ground current return paths. Success or failure to optimize input signal isolation can be measured directly as the isolation between the input channels with the CLC532 removed from circuit. The channel-to-channel isolation of the CLC532 can never be better than the isolation level present at its inputs.

Special attention must be paid to input termination resistors. Minimizing the return current path that is common to both of the input termination resistors is essential. In the event that a ground return current from one input termination resistor is able to find a secondary path back to its signal source (which also happens to be common with either the primary or secondary return path for the second input termination resistor), a small voltage can appear across the second input termination resistor. The small voltage seen across the second input termination resistor will be highly correlated with the signal generating the initial return currents. This situation will severely degrade channel-to-channel isolation at the input of the CLC532, even if the CLC532 were removed from circuit. Poor isolation at the input will be transmitted directly to the output.

Use of "small" value input termination resistors will also improve channel-to-channel isolation. However, extremely low values ($<25 \Omega$) tend to stress the driving source's ability to provide a highquality input signal to the CLC532. Higher values tend to aggravate any layout dependent crosstalk. 75Ω to 50Ω is a reasonable target, but the lower the better.

Combining Two Signals in ADC Applications

The CLC532 is applicable in a wide range of circuits and applications. A classic example of this flexibility is combining two or more signals for digitization by an analog-to-digital converter (ADC). A clear understanding of both the multiplexer and the ADC's operation is needed to optimize this configuration.

To obtain the best performance from the combination, the output of the CLC532 must be an accurate representation of the selected input during the ADC conversion cycle. The time at which the ADC samples the input varies with the type of ADC that is being used.

Subranging ADCs usually have a Track-and-Hold (T/H) at their input. For a successful combination of the multiplexer and the ADC, the multiplexer timing and the T / H timing must be compatible. When the ADC is given a convert command, the T/H transitions from Track mode to Hold mode. The delay between the convert command and this transition is usually specified as Aperture Delay or as Sampling Time Offset.

To maximize the time that the multiplexer output has to settle, and that the T / H has to acquire the signal, the multiplexer should begin its transition from one input to the other immediately after the T/H transition into HOLD mode. Unfortunately it is during the initial portion of the HOLD period that a subranging ADC performs analog processing of the sampled signal. High slew rate transitions on the input during this time may have a detrimental effect on the conversion accuracy.

To minimize the effects of high input slew rates, two strategies that can employed. Strategy one applies when the sample rate of the system is below the rated speed of the ADC. Here the CLC532 SELECT timing is delayed until after the multiplexer transition takes place, and after the A/D has completed one conversion cycle and is waiting for the next convert command. As an example, if a CLC935 (15MSPS) ADC is being used at 10MSPS, the conversion takes place in the first 67ns after the CONVERT command. The next 33ns are spent waiting for the next CONVERT command, and would be an ideal place to switch the multiplexer from one channel to the next.

Figure 7: Recommended $\mathrm{C}_{\text {comp }}$ vs. ADC Sample Rate
The second optimization strategy involves lowering the slew rate at the input of the ADC so that fewer high frequency components are available to feed through to the hold capacitor during HOLD
mode. The CLC532 output signal can be slew limited by using its compensation capacitors. This approach also has the advantage of limiting the excess noise passed through the CLC532 and on to the ADC. Figure 7 shows the recommended $\mathrm{C}_{\text {сомр }}$ values as a function of ADC Sample rate. Since the optimal values will change from one ADC to the next, this graph should be used as a starting point for $\mathrm{C}_{\text {comp }}$ selection. Both $\mathrm{C}_{\text {comp }}$ capacitors should be the same value to maintain output symmetry.

Flash ADCs are similar to subranging ADCs in that the sampling period is very brief. The primary difference is that the acquisition time of a flash converter is much shorter than that of a subranging ADC. With a flash ADC, the transition of the CLC532 output should be after the sampling instant ("Aperture Delay" after the CONVERT command). It is only during this period that a flash converter is susceptible to interference from a rapidly changing analog input signal.

Gain Selection for an ADC

In many applications, such as RADAR, the dynamic range requirements may exceed the accuracy requirements. Since wide dynamic range ADCs are also typically highly accurate ADCs, this often leads the designer into selecting an ADC which is a technical overkill and a budget buster. By using the CLC532 as a selectable-gain stage, a less expensive ADC can be used. As an example, if an application calls for 80 dB of dynamic Range and 0.05% accuracy, rather than using a 14 -bit converter, a 12 bit converter combined with the circuit in figure 8 will meet the same objective. The CLC532 is used to select between the analog input signal and a version of the input signal attenuated by 12dB. This circuit affords 14 -bit dynamic range, 12-bit accuracy and 12-bit ease of implementation.

Figure 8: Selectable Gain Stage Improves ADC Dynamic Range

Full Wave Rectifier Circuit

The use of a diode rectifier provides significant distortion for signals that are small compared to the forward bias voltage. Accordingly, when low distortion performance is needed, standard diode based circuits do not work well. The CLC532 can be configured to provide a very low distortion full wave rectifier. The circuit in figure 9 is used to select between an analog input signal and an inverted version of the input signal. The resulting output exhibits very little distortion for small scale signals up to several hundred kilohertz.

Figure 9: Low Distortion Full Wave Rectifier

Use of the CLC532 as a Mixer.

A double balanced mixer, such as is shown in figure 10, operates by multiplying the RF input by the LO input. This is done by using the LO to select one of two paths through a diode bridge depending upon the LO sign. The result is an output where IF=RF when $L O>0$ and $\mathrm{IF}=-\mathrm{RF}$ if $\mathrm{LO}<0$. This same result can be obtained with the circuit shown in figure 11. The CLC532 based circuit uses a digital LO making system design easier in those cases where the LO is digitally derived. One advantage of the CLC532 based approach is excellent isolation between all three ports. Also see the RF design awards article by Thomas Hack in the January 1993 issue of RF Design.

Figure 10: Typical Double-Balanced Mixer

Figure 11: High-Isolation Mixer Implementation

Evaluation Board

An evaluation board (part number CLC730028) for the CLC532 is available. This board can be used for fast, trouble-free, evaluation and characterization of the CLC532. Additionally, this board serves as a template for layout and fabrication information. The CLC532 evaluation board data sheet is available.

This page intentionally left blank.

This page intentionally left blank.

This page intentionally left blank.
CLC532
High-Speed 2:1 Analog Multiplexer

Customer Design Applications Support

National Semiconductor is committed to design excellence. For sales, literature and technical support, call the National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.

Life Support Policy

National's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of National Semiconductor Corporation. As used herein:

1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor Corporation	National Semiconductor	National Semiconductor	National Semiconductor
1111 West Bardin Road	Europe	Fax: $(+49) 0-180-5308586$	Hong Kong Ltd.	Japan Ltd.
	Erlington, TX 76017	E-mail: europe.support.nsc.com	1-23 Kimberley Road	Tel: 81-043-299-2309
	Tel: $1(800) 272-9959$	Deutsch Tel: $(+49) 0-180-5308585$	Tsimshatsui, Kowloon	Fax: 81-043-299-2408
	Fax: $1(800) 737-7018$	English Tel: $(+49) 0-180-5327832$	Hong Kong	
		Francais Tel: $(+49) 0-180-5329358$	Tel: $(852) 2737-1600$	
	Italiano Tel: $(+49) 0-180-5341680$	Fax: $(852) 2736-9960$		

