National Semiconductor

DM54LS165/DM74LS165 8-Bit Parallel

 In/Serial Output Shift Registers
General Description

This device is an 8 -bit serial shift register which shifts data in the direction of Q_{A} toward Q_{H} when clocked. Parallel-in access is made available by eight individual direct data inputs, which are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit.
Clocking is accomplished through a 2 -input NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the load input is high.

Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input, regardless of the logic levels on the clock, clock inhibit, or serial inputs.

Features

- Complementary outputs

■ Direct overriding (data) inputs

- Gated clock inputs
- Parallel-to-serial data conversion

■ Typical frequency 35 MHz
■ Typical power dissipation 105 mW

Connection Diagram

TL/F/6399-1
Order Number DM54LS165J, DM54LS165W, DM74LS165WM or DM74LS165N See NS Package Number J16A, M16B, N16E or W16A
Function Table

Inputs					Internal Outputs		Output Q_{H}
Shift/ Load	Clock Inhibit	Clock	Serial	Parallel			
				A...H	$\mathbf{Q}_{\mathbf{A}}$	Q_{B}	
L	X	X	X	a...h	a	b	h
H	L	L	X	X	$Q_{\text {AO }}$	Q_{B0}	Q_{HO}
H	L	\uparrow	H	X	H	$Q_{\text {An }}$	$Q_{G n}$
H	L	\uparrow	L	X	L	$Q_{\text {An }}$	$Q_{G n}$
H	H	X	X	X	$Q_{\text {AO }}$	$Q_{B 0}$	Q_{HO}

$\mathrm{H}=$ High Level (steady state), $\mathrm{L}=$ Low Level (steady state)
$\mathrm{X}=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from low-to-high level
a... $\mathrm{h}=$ The level of steady-state input at inputs A through H , respectively.
$Q_{A O}, Q_{B 0}, Q_{H 0}=$ The level of Q_{A}, Q_{B}, or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{G n}=$ The level of Q_{A} or Q_{G}, respectively, before the most recent \uparrow transition of the clock

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
DM74LS
Storage Temperature Range
SM

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the 'Electrical Characteristics' table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions"' table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS165			DM74LS165			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 1)				30	0		25	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)					0		20	MHz
tw	Pulse Width (Note 2)	Clock	18			25			ns
		Load	15			15			
${ }^{\text {tsu }}$	Setup Time (Note 6)	Parallel	10			10			ns
		Serial	10			20			
		Enable	10			30			
		Shift	10			45			
t_{H}	Hold Time (Note 6)		5			0			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x, V_{I}=7 V(D M 74) \\ & V_{I}=10 V(D M 54) \end{aligned}$	Shift/Load			0.3	mA
			Others			0.1	
IIH	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	Shift/Load			60	$\mu \mathrm{A}$
			Others			20	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Shift/Load			-1.2	mA
			Others			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 4) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)			21	36	mA

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: With all outputs open, clock inhibit and shift/load at 4.5 V , and a clock pulse applied to the CLOCK input, I ICC is measured first with the parallel inputs at
4.5 V , then again grounded.

Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$									
Symbol	Parameter	From (Input) To (Output)	DM54LS		DM74LS		DM74LS		Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$		
			Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		25		20		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Load to Any Q		30		35		37	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		30		35		42	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		30		40		42	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		30		40		47	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \mathrm{Q}_{\mathrm{H}} \\ \hline \end{gathered}$		20		25		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \mathrm{Q}_{\mathrm{H}} \\ \hline \end{gathered}$		30		30		37	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\text { to }{\stackrel{H}{\mathrm{Q}_{\mathrm{H}}}}^{2}$		30		30		32	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\text { to } \overline{\mathrm{H}}_{\mathrm{Q}}$		25		25		32	ns

Timing Diagram

Logic Diagram

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

6-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS165N NS Package Number N16E

16-Lead Ceramic Flat Package (W) Order Number DM54LS165W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjuge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: (+49) 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

