9334/DM9334 8-Bit Addressable Latch

General Description

The DM9334 is a high speed 8-bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level high outputs. The device also incorporates an active level low common clear for resetting all latches, as well as an active level low enable.
The DM9334 has four modes of operation which are shown in the mode selection table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all nonaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs.
In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other inputs in the low state. In the clear mode all outputs are low and unaffected by the address and data inputs.

When operating the device as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.
The function tables summarize the operation of the product.

Features

- Common clear
- Easily expandable
- Random (addressable) data entry
- Serial to parallel capability
- 8 bits of storage/output of each bit available
- Active high demultiplexing/decoding capability
- Alternate Military/Aerospace device (9334) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

[^0]Order Number 9334DMQB, 9334FMQB, DM9334J or DM9334N See NS Package Number J16A, N16E or W16A

Absolute Maximum Ratings $($ Note)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office ${ }^{\text {Sistributors for availability and specifications. }}$	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	0° to $+70^{\circ} \mathrm{C}$
Commercial	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Military			Commercial			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{\text {OH }}$	High Level Output Current				-0.8			-0.8	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				16			16	mA
tw	ENABLE Pulse Width (Fig. 1) (Note 4)		19	13		19	13		ns
${ }_{\text {tsu }}$	Setup Time (Note 4)	Data 1 (Fig. 4)	20	13		20	13		ns
		Data 0 (Fig. 4)	20	14		20	14		
		Address (Fig. 6) (Note 1)	10	5		10	5		
${ }_{\text {th }}$	Hold Time (Note 4)	Data 1 (Fig. 4)	0	-10		0	-10		ns
		Data 0 (Fig. 4)	0	-13		0	-13		
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.6		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \hline \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \end{aligned}$	E Input			60	$\mu \mathrm{A}$
			Others			40	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	\bar{E} Input			-2.4	mA
			Others			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	MIL	-30		-100	mA
			COM	-30		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			56	86	mA

Note 1: The ADDRESS setup time is the time before the negative ENABLE transition that the ADDRESS must be stable so that the correct latch is addressed without affecting the other latches.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output, Fig. 1		28	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output, Fig. 1		27	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output, Fig. 2		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output, Fig. 2		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Address to Output, Fig. 3		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Address to Output, Fig. 3		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output, Fig. 5		31	ns

Function Tables

$\overline{\mathbf{E}}$	$\overline{\mathbf{C}}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active High Eight Channel Demultiplexer Clear
H	L	

Inputs						Present Output States								Mode
\bar{C}	\bar{E}	D	A0	A1	A2	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
L	H	X	X	X	X	L	L	L	L	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	L	L	L	L	L	
L	L	H	L	L	L	H	L	L	L	L	L	L	L	
L	L	L	H	L	L	L	L	L	L	L	L	L	L	
L	L	H	H	L	L	L	H	L	L	L	L	L	L	
\bullet		\bullet		\bullet					\bullet					Demultiplex
\bullet	-	\bullet		\bullet					\bullet					
L	L	H	H	H	H	L	L	L	L	L	L	L	H	
H	H	X	X	X	X	Q_{N-1}								Memory
H	L	L	L	L	L	L	Q_{N-1}	Q_{N-1}	Q_{N-1}					
H	L	H	L	L	L	H	Q_{N-1}	Q_{N-1}						
H	L	L	H	L	L	Q_{N-1}	L	Q_{N-1}						
H	L	H	H	L	L	Q_{N-1}	H	Q_{N-1}						Addressable
-	\bullet	-		\bullet				\bullet						
-	\bullet	-		-				-						
H	L	L	H	H	H	Q_{N-1}						Q_{N-1}	L	
H	L	H	H	H	H	Q_{N-1}						Q_{N-1}	H	

X $=$ Don't Care Condition
L = Low Voltage Level
$H=$ High Voltage Level
$\mathrm{Q}_{\mathrm{N}-1}=$ Previous Output State

Logic Diagram

03

07
TL/F/6609-2

Switching Time Waveforms

TL/F/6609-4

$$
\text { Other Conditions: } \overline{\mathrm{E}}=\mathrm{L}, \overline{\mathrm{C}}=\mathrm{H}, \mathrm{~A}=\text { Stable }
$$

Figure 2
Other Conditions: $\mathrm{C}=\mathrm{H}, \mathrm{A}=$ Stable
Figure 1

Other Conditions: $\overline{\mathrm{E}}=\mathrm{L}, \overline{\mathrm{C}}=\mathrm{L}, \mathrm{D}=\mathrm{H}$
Figure 3

Figure 5

Other Conditions: $\overline{\mathrm{C}}=\mathrm{H}$
Figure 6
Note: The shaded areas indicate when the inputs are permitted to change for predictable output performance.

Physical Dimensions inches (millimeters)

Physical Dimensions inches (milimeters) (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W)
Order Number 9334FMQB
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^0]: TL/F/6609-1

