January 2000

DS2003 High Current/Voltage Darlington Drivers

General Description

The DS2003 is comprised of seven high voltage, high current NPN Darlington transistor pairs. All units feature common emitter, open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate emitter base resistors for leakage.

The DS2003 has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5.0V.

The DS2003 offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and

bility of a single output may be accommodated by paralleling the outputs.

LEDs. Applications requiring sink currents beyond the capa-

Features

- Seven high gain Darlington pairs
- High output voltage (V_{CE} = 50V)
- High output current (I_C = 350 mA)
- TTL, PMOS, CMOS compatible
- Suppression diodes for inductive loads
- Extended temperature range

Connection Diagram

OUT A IN A 5 OUT B IN В 3 OUT C IN C 13 OUT D IN D ы 5 2 OUT E IN F 6 11 IN F OUT F 7 10 OUT G IN G 8 9 GND COMMON DS009647-1

16-Lead DIP

Top View

Order Numbers

N Package Number N16E	M Package Number M16A
DS2003TN	DS2003TM
DS2003CN	DS2003CM

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	
DS2003TN, DS2003TM	-40°C to +105°C
DS2003CN, DS2003CM	0°C to +85°C
Lead Temperature	
Soldering, 10 seconds	265°C

N16E Package1330 mWM16A Package770 mWInput Voltage30VOutput Voltage55VEmitter-Base Voltage6.0VContinuous Collector Current500 mAContinuous Base Current25 mA

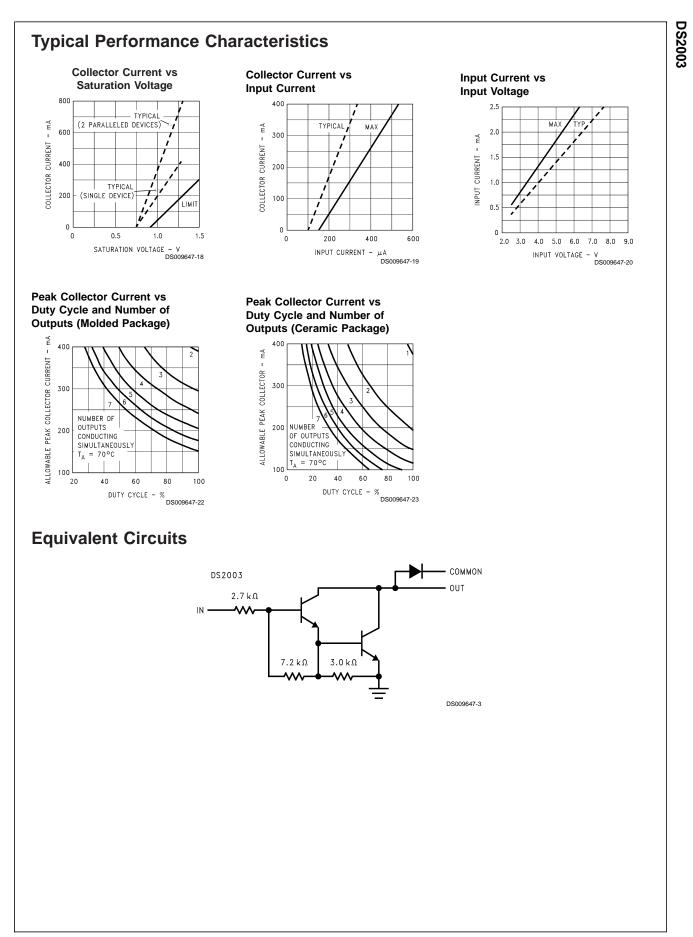
Note: *Derate N16E package 13.3 mW/°C for T_A above 25°C. Derate M16A package 7.7 mW/°C for T_A above 25°C.

Maximum Power Dissipation* at $T_A = 25^{\circ}C$

Electrical Characteristics

 $T_A = 25^{\circ}C$, unless otherwise specified (Note 2)

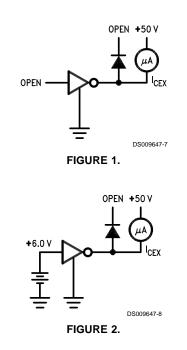
Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{CEX}	Output Leakage	$T_A = 25^{\circ}C, V_{CE} = 50V$ (Figure 1)			20	
	Current	$T_A = 85^{\circ}C$, $V_{CE} = 50V$ (Figure 1) for DS2003CN, DS2003CM			100	μA
		$T_A = 105^{\circ}C$, $V_{CE} = 50V$ (Figure 1) for DS2003TN, DS2003TM			150	
V _{CE(Sat)}	Collector-Emitter	I _C = 350 mA, I _B = 500 μA <i>(Figure 3)</i> (Note 3)		1.25	1.6	
Saturation Voltage	$I_{\rm C}$ = 200 mA, $I_{\rm B}$ = 350 μ A (Figure 3)		1.1	1.3	V	
		$I_{\rm C}$ = 100 mA, $I_{\rm B}$ = 250 μ A (Figure 3)		0.9	1.1	
I _{I(ON)}	Input Current	V ₁ = 3.85V (Figure 4)		0.93	1.35	mA
I _{I(OFF)}	Input Current (Note 4)	$T_A = 85^{\circ}C$ for DS2003CN, DS2003CM $I_C = 500 \ \mu A \ (Figure 5)$	50	100		μA
V _{I(ON)}	Input Voltage	V _{CE} = 2.0V, I _C = 200 mA (<i>Figure 6</i>)			2.4	
	(Note 5)	V _{CE} = 2.0V, I _C = 250 mA (<i>Figure 6</i>)			2.7	V
		V _{CE} = 2.0V, I _C = 300 mA (<i>Figure 6</i>)			3.0]
Cı	Input Capacitance			15	30	pF
t _{PLH}	Turn-On Delay	0.5 V _I to 0.5 V _O			1.0	μs
t _{PHL}	Turn-Off Delay	0.5 V _I to 0.5 V _O			1.0	μs
I _R	Clamp Diode	$V_{R} = 50V (Figure 7)T_{A} = 25^{\circ}C$			50	μA
	Leakage Current	$T_A = 85^{\circ}C$			100	μA
V _F	Clamp Diode Forward Voltage	I _F = 350 mA (<i>Figure 8</i>)		1.7	2.0	V


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: All limits apply to the complete Darlington series except as specified for a single device type.

Note 3: Under normal operating conditions these units will sustain 350 mA per output with $V_{CE (Sat)} = 1.6V$ at 70°C with a pulse width of 20 ms and a duty cycle of 30%.

Note 4: The $I_{I(OFF)}$ current limit guaranteed against partial turn-on of the output.


Note 5: The V_{I(ON)} voltage limit guarantees a minimum output sink current per the specified test conditions.

www.national.com

DS2003

Test Circuits

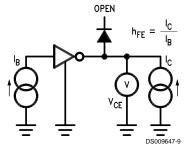
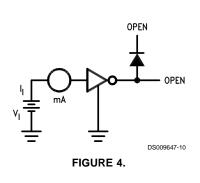



FIGURE 3.

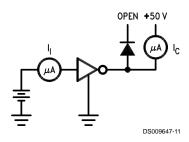


FIGURE 5.

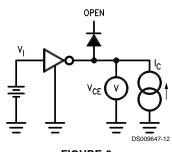
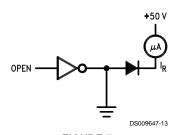
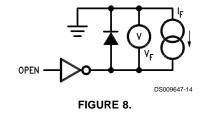
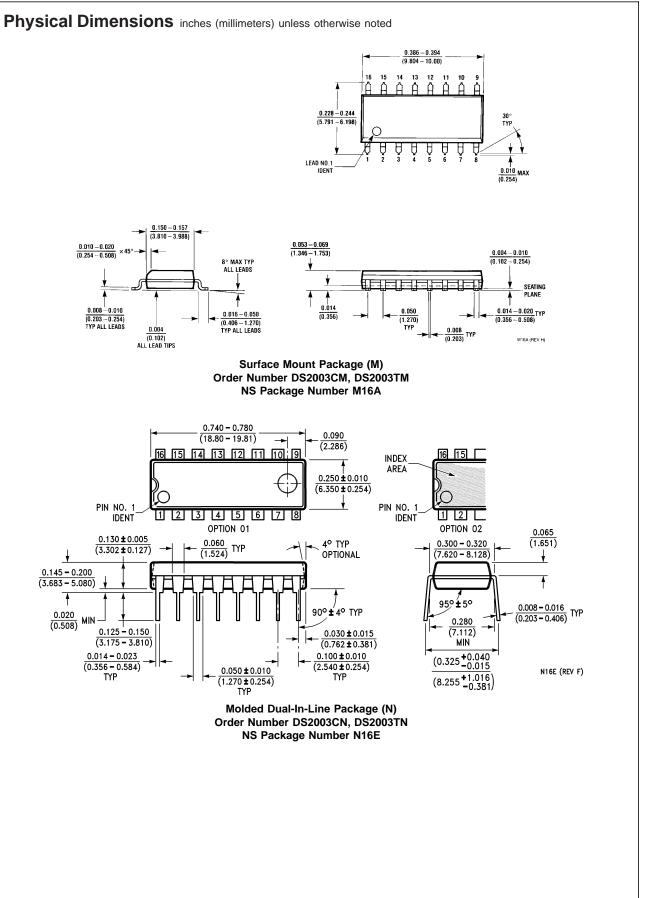




FIGURE 6.



www.national.com

DS2003

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.