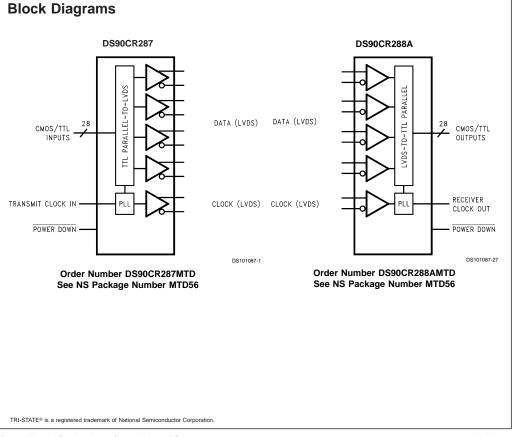


DS90CR287/DS90CR288A +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ


General Description

The DS90CR287 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR288A receiver converts the four LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of 85 MHZ, 28 bits of TTL data are transmitted at a rate of 595 Mbps per LVDS data channel. Using a 85 MHZ clock, the data throughput is 2.38 Gbit/s (297.5 Mbytes/sec).

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 85 MHZ shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set & Hold Times on TxINPUTs
- Low power consumption
- ±1V common mode range (around +1.2V)
- Narrow bus reduces cable size and cost
- Up to 2.38 Gbps throughput
- Up to 297.5 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead TSSOP package

© 1999 National Semiconductor Corporation DS101087

www.national.com

October 1999

please co	y/Aerospace specified devices ar ontact the National Semiconductor S	Sales Office/	Package Derating: DS90CR287			12	2.5 mW/	°C above
	ors for availability and specification		DS90CR288A			12	2.4 mW/	+25°C C above
	bltage (V _{CC})	-0.3V to +4V						+25°C
	TL Input Voltage -0	0.5V to (V _{CC} + 0.3V)	ESD Rating					
CMOS/T	L Output Voltage -0	.3V to (V _{CC} +	(HBM, 1.5kΩ, 100pF)				> 7k\
		0.3V)	(EIAJ, 0Ω, 200pF)	a . 05°0				> 700\
LVDS Re	ceiver Input Voltage -0	0.3V to (V _{CC} + 0.3V)	Latch Up Tolerance	@ +25 C			>	±300m/
LVDS Dri	ver Output Voltage -0	0.3V to (V _{CC} + 0.3V)	Recommende	d Op	era	ting		
LVDS Ou	tput Short Circuit	,	Conditions					
Duratio	n	Continuous			Min	Nom	Max	Units
Junction	Temperature	+150°C	Supply Voltage (V _{CC})		3.0	3.3	3.6	V
Storage 7	emperature -65	5°C to +150°C	Operating Free Air					
ead Ten	perature		Temperature (T _A)		-10	+25	+70	°C
(Solder	ing, 4 sec.)	+260°C	Receiver Input Range		0		2.4	V
	n Package Power Dissipation @ +25°C	C	Supply Noise Voltage ((V _{cc})			100	mV_{PP}
	6 (TSSOP) Package:							
DS90)CR287	1.63 W						
	ical Characteristics							
Over rec	commended operating supply and tem							
Over rec mbol	Parameter		unless otherwise specified Conditions	Min	-	Гур	Max	Units
Over rec mbol CMOS/TT	Parameter L DC SPECIFICATIONS			Min		Гур		
Over red mbol СМОЅ/ТТ	Parameter L DC SPECIFICATIONS High Level Input Voltage			Min 2.0		Гур	V _{CC}	V
Over rec mbol CMOS/TT / _{IH}	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage		Conditions	Min 2.0 GND				V V
Over rec mbol СМОЅ/ТТ / _{IH} / _{IL} / _{он}	Parameter L DC SPECIFICATIONS High Level Input Voltage	I _{OH} = -0.4 r	Conditions	Min 2.0		Гур 3.3	V _{CC}	V V V
Over rec mbol CMOS/TT / _{IH} / _{IL} / _{OH} / _{OL}	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$	nA	Min 2.0 GND			V _{CC}	V V
Over rec mbol CMOS/TT / _{IH} / _{IL} / _{OH} / _{OL}	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$	mA IA	Min 2.0 GND	C	3.3	V _{CC} 0.8	V V V
Over rec mbol	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$	nA	Min 2.0 GND	C	3.3	V _{CC} 0.8	V V V V V
Over rec mbol CMOS/T V _{IH} V _{IL} V _{OH} V _{OL} V _{OL}	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Clamp Voltage	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$	mA IA	Min 2.0 GND	C	3.3 0.06 0.79	V _{cc} 0.8 0.3 -1.5	V V V V V V
Over rec mbol СМОS/T / _{II} / _{OH} / _{OH} / _{OL} / _{CL} IN	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Clamp Voltage	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4 \text{V},$	mA IA	Min 2.0 GND 2.7	C	3.3 0.06 0.79 -1.8	V _{cc} 0.8 0.3 -1.5	V V V V V V μΑ
Over rec mbol СМОЗ/ГТ /IH /IL /OH /OL /CL IN OS	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Clamp Voltage Input Current	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$	mA IA	Min 2.0 GND 2.7	C	3.3 0.06 0.79 -1.8 0	V _{CC} 0.8 0.3 -1.5 +15	V V V V V V μΑ
Over rec mbol СМОS/ГТ / _{IH} / _{IL} / _{OH} / _{OL} / _{CL} IN N OS	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Clamp Voltage Input Current Output Short Circuit Current	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$	mA IA	Min 2.0 GND 2.7	C C +	3.3 0.06 0.79 -1.8 0	V _{CC} 0.8 0.3 -1.5 +15	V V V V V V μΑ μΑ
Оver rec mbol СМОS/TT /IH /IL /OH /OL /CL IN N OS VDS DR /OD	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$	mA IA	Min 2.0 GND 2.7 -10	C C +	3.3 0.06 0.79 1.8 0 -60	V _{cc} 0.8 -1.5 +15 -120	V V V V V V V Ац Ат Vm
Оver rec mbol СМОS/T /Iн /IL /OH /OL /CL IN OS .VDS DR /OD NOD	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$	mA IA	Min 2.0 GND 2.7 -10	C C +	3.3 0.06 0.79 1.8 0 -60	V _{CC} 0.8 0.3 -1.5 +15 -120 450	V V V V V V V μ Α m M
Over rec mbol CMOS/T / _{IH} / _{OH} / _{OL} / _{OL} / _{CL} IN OS LVDS DR / _{OD}	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4)	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$	mA IA	Min 2.0 GND 2.7 -10		3.3 0.06 0.79 1.8 0 -60	V _{CC} 0.8 0.3 -1.5 +15 -120 450	V V V V V V V μ Α m M
Over rec mbol СМОS/TT /Iн /IL /OH /OL /CL IN N OD VOD /OS	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$	mA IA	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60	V _{cc} 0.8 0.3 -1.5 +15 -120 450 35	V V V V V V V V V V M V m V V V
Over rec nbol MOS/TT /IH /IL /OH /OL /CL N VDS DR /OD VOS	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage in V _{OS} between Complimentary Output States	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$	Conditions mA IA 2.5V or V _{CC}	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60 290 .25	V _{CC} 0.8 0.3 -1.5 +15 -120 450 35 1.375 35	V V V V V V Δ μ Α Δ M V V W V M V M V M
Over rec mbol CMOS/TT /IH /IL /OH /OL /CL IN VOD VOD VOD VOD VOD	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between Complimentary Output States Output Short Circuit Current	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$ $V_{OUT} = 0V,$	Conditions mA iA 2.5V or V_{CC} $R_L = 100\Omega$	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60	V _{CC} 0.8 0.3 -1.5 +15 -120 450 35 1.375	V V V V V V Α μ Α Δ W V V W V M V M V M M
Over rec mbol СМОS/TT /IH /IL /OH /OL /CL IN N OS VOD VOD VOD VOD VOS	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage in V _{OS} between Complimentary Output States	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$ $V_{OUT} = 0V,$ $\overline{PWR DWN}$	Conditions mA A 2.5V or V _{CC} $R_L = 100\Omega$ = 0V,	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60 290 .25	V _{CC} 0.8 0.3 -1.5 +15 -120 450 35 1.375 35	V V V V V V Α μ Α Δ W V V W V M V M V M M
Over rec mbol CMOS/TT /IH /IL /OH /OL /CL IN VOD VOD VOD VOD VOD VOD VOS OS OZ	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between Complimentary Output States Output Short Circuit Current Output Short Circuit Current	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$ $V_{OUT} = 0V,$	Conditions mA A 2.5V or V _{CC} $R_L = 100\Omega$ = 0V,	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60 290 .25 3.5	V _{CC} 0.8 -1.5 +15 -120 450 35 1.375 35	V V V V V V Α μ Α Δ W V V W V M V M V M M
Over rec nbol MOS/TT (III - (III - (III - (III - (IIII - (IIII - (IIII - (IIII - (IIII - (IIIII - (IIIIII - (IIIIII - (IIIIIIII	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between Complimentary Output States Output Short Circuit Current Output Short Circuit Current Complimentary Output States Output Short Circuit Current Cutput Short Circuit Current Output Short Circuit Current Output Short Circuit Current Celiver DC SPECIFICATIONS	$\begin{array}{c} I_{OH} = -0.4 \text{ r} \\ I_{OL} = 2 \text{ mA} \\ I_{CL} = -18 \text{ m} \\ V_{IN} = 0.4 \text{ V}, \\ \hline V_{IN} = GND \\ V_{OUT} = 0 \text{ V} \\ \end{array}$	Conditions mA A 2.5V or V _{CC} $R_L = 100\Omega$ = 0V, or V _{CC}	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60 290 .25 3.5	V _{CC} 0.8 0.3 -1.5 +15 -120 450 35 1.375 35 -5 ±10	V V V V V Δ μ Α Δ V V V V V V V V M V V M V M
Over rec mbol XMOS/TI /IH /IL /OD /OL /CL IN ODS VODS DR /ODS VODS ODS ODS VODS ODS ODS ODS ODS VODS ODS ODS ODS ODS ODS ODS ODS VODS ODS ODS<	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between Complimentary Output States Output Short Circuit Current Output Short Circuit Huge Complimentary Output States Output Short Circuit Current Output TRI-STATE® Current Output TRI-STATE® Current Differential Input High Threshold	$I_{OH} = -0.4 r$ $I_{OL} = 2 mA$ $I_{CL} = -18 m$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$ $V_{OUT} = 0V,$ $\overline{PWR DWN}$	Conditions mA A 2.5V or V _{CC} $R_L = 100\Omega$ = 0V, or V _{CC}	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60 290 .25 3.5	V _{CC} 0.8 -1.5 +15 -120 450 35 1.375 35	V V V V V V Δ μ Α μ Α W V W W V M V M V M M
Over rec mbol СМОS/TT /IH /IL /OH /OL /CL IN N OS VOS DF /OD VOD /OS VOS OS OZ	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between Complimentary Output States Output Short Circuit Current Output Short Circuit Current Complimentary Output States Output Short Circuit Current Cutput Short Circuit Current Output Short Circuit Current Output Short Circuit Current Celiver DC SPECIFICATIONS	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$ $V_{OUT} = 0V,$ $PWR DWN$ $V_{OUT} = 0V O$ $V_{CM} = +1.2V$	Conditions mA iA 2.5V or V_{CC} $R_L = 100\Omega$ = 0V, or V_{CC} V	Min 2.0 GND 2.7 -10 250		3.3 0.06 0.79 1.8 0 -60 290 .25 3.5	V _{CC} 0.8 0.3 -1.5 +15 -120 450 35 1.375 35 -5 ±10	V V V V V V Δ μ Α V V V V V V V V V M V V V V V V V V V
Over rec mbol CMOS/TT / _{II} H / _{OH} / _{OL} / _{OL}	Parameter L DC SPECIFICATIONS High Level Input Voltage Low Level Input Voltage High Level Output Voltage Input Clamp Voltage Input Clamp Voltage Input Clamp Voltage Input Current Output Short Circuit Current IVER DC SPECIFICATIONS Differential Output Voltage Change in V _{OD} between Complimentary Output States Offset Voltage (Note 4) Change in V _{OS} between Complimentary Output States Output Short Circuit Current Output Short Circuit Huge Complimentary Output States Output Short Circuit Current Output TRI-STATE® Current Output TRI-STATE® Current Differential Input High Threshold	$I_{OH} = -0.4 \text{ r}$ $I_{OL} = 2 \text{ mA}$ $I_{CL} = -18 \text{ m}$ $V_{IN} = 0.4V,$ $V_{IN} = GND$ $V_{OUT} = 0V$ $R_{L} = 100\Omega$ $V_{OUT} = 0V,$ $PWR DWN$ $V_{OUT} = 0V O$ $V_{CM} = +1.2V$	Conditions mA A 2.5V or V _{CC} $R_L = 100\Omega$ = 0V, or V _{CC}	Min 2.0 GND 2.7 -10 250 1.125		3.3 0.06 0.79 1.8 0 -60 290 .25 3.5	V _{CC} 0.8 0.3 -1.5 +15 -120 450 35 1.375 35 -5 ±10	V V V V V Α μ Α Δ V V V V V V V V M V M V A A Q M

DS90CR288A

Absolute Maximum Ratings (Note 1)

DS90CR287/DS90CR288A

1.61 W

www.national.com

3

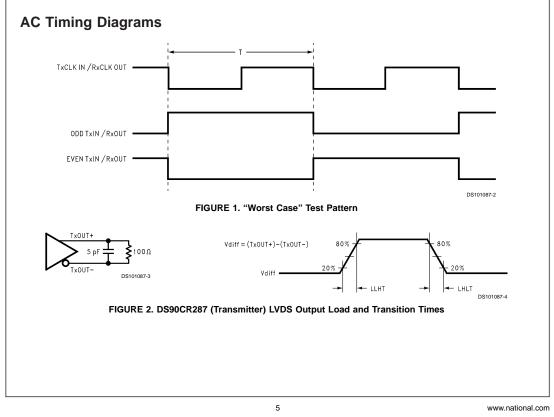
Over recommended operating supply and temperature ranges unless otherwise specified												
Symbol	Parameter	Min	Тур	Max	Unit							
TRANSMITTER SUPPLY CURRENT												
I _{CCTW}	Transmitter Supply Current	R _L = 100Ω,	f = 33 MHz		31	45	m					
	Worst Case (with Loads)	$C_L = 5 \text{ pF},$	f = 40 MHz		32	50	m					
		Worst Case Pattern	f = 66 MHz		37	55	m					
		(Figures 1, 2)	f = 85 MHz		42	60	m					
I _{CCTZ}	Transmitter Supply Current Power Down	PWR DWN = Low Driver Outputs in under Powerdown	TRI-STATE		10	55	h					
RECEIV	ER SUPPLY CURRENT			•								
ICCRW	Receiver Supply Current Worst	C _L = 8 pF,	f = 33 MHz		49	70	m					
	Case	Worst Case	f = 40 MHz		53	75	m					
		Pattern	f = 66 MHz		81	114	m					
		(Figures 1, 3)	f = 85 MHz		96	135	m					
I _{CCRZ}	Receiver Supply Current Power Down	PWR DWN = Low Receiver Outputs Powerdown Mode	Stay Low during		140	400	μ					

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

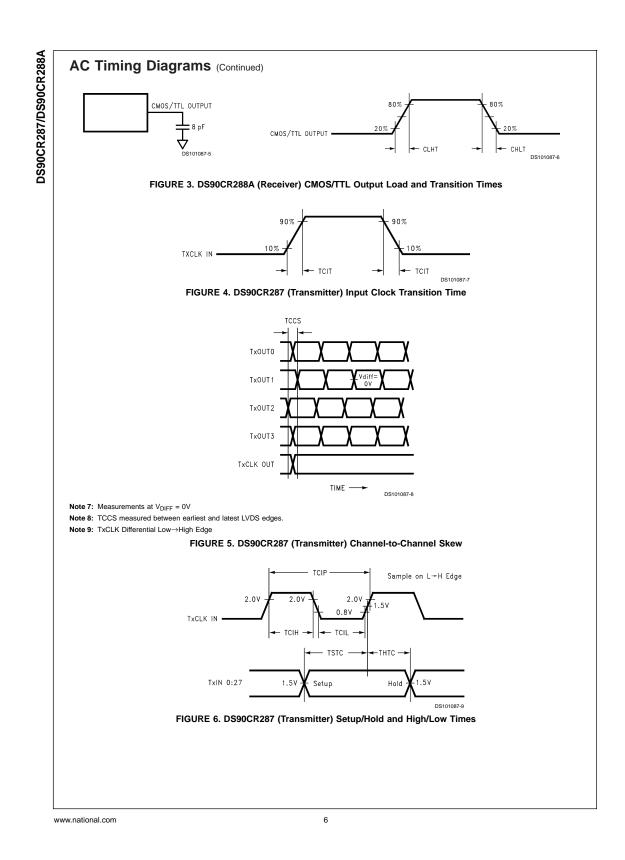
Note 2: Typical values are given for V_{CC} = 3.3V and T_A = +25 $^\circ\text{C}.$

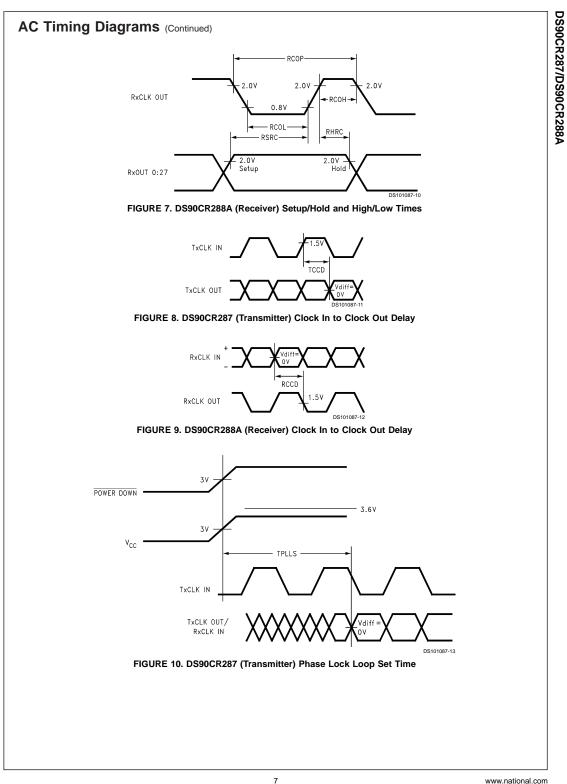
Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and Δ V_{OD}).

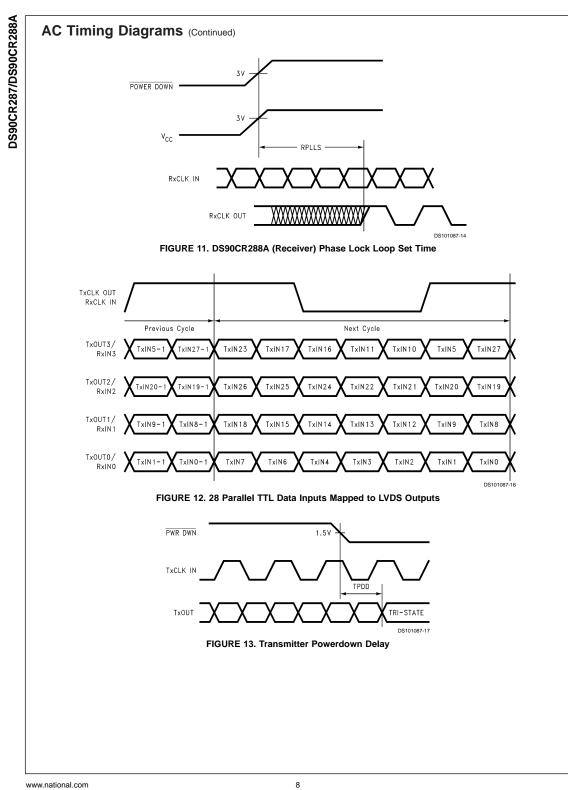
Note 4: V_{OS} previously referred as $V_{CM}\!.$

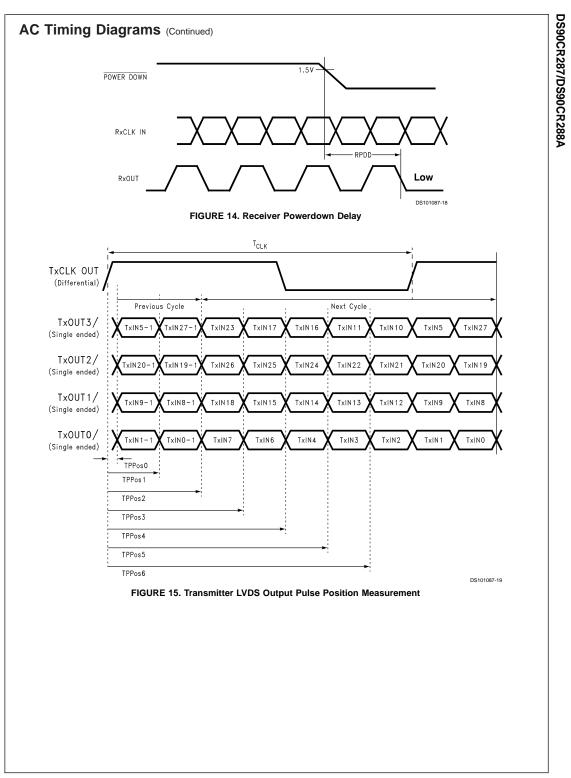

Transmitter Switching Characteristics Over recommended operating supply and temperature ranges unless otherwise specified

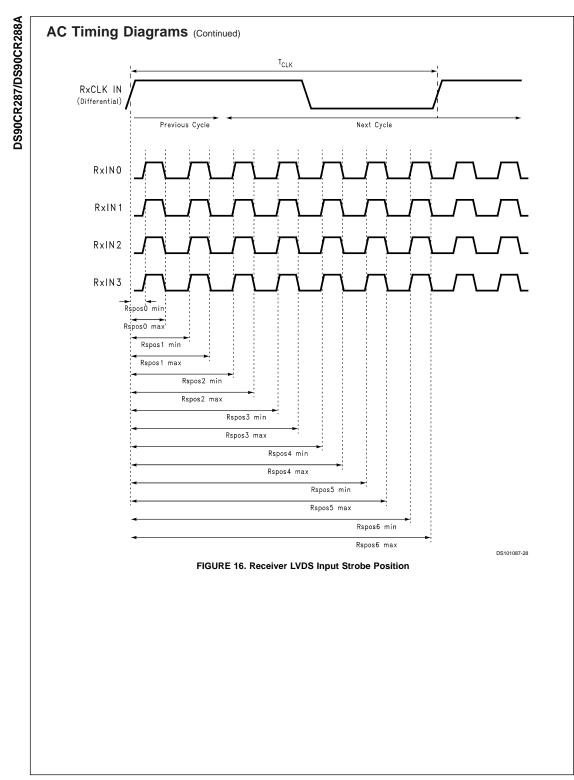
Symbol	Parameter		Min	Тур	Max	Units
LLHT	LVDS Low-to-High Transition Time (Figure 2)			0.75	1.5	ns
LHLT	LVDS High-to-Low Transition Time (Figure 2)		0.75	1.5	ns	
TCIT	TxCLK IN Transition Time (Figure 4)		1.0		6.0	ns
TPPos0	Transmitter Output Pulse Position for Bit0 (Figure 15)	f = 85 MHz	-0.20	0	0.20	ns
TPPos1	Transmitter Output Pulse Position for Bit1]	1.48	1.68	1.88	ns
TPPos2	Transmitter Output Pulse Position for Bit2]	3.16	3.36	3.56	ns
TPPos3	Transmitter Output Pulse Position for Bit3	1	4.51	5.04	5.24	ns
TPPos4	Transmitter Output Pulse Position for Bit4	1	6.52	6.72	6.92	ns
TPPos5	Transmitter Output Pulse Position for Bit5	1	8.20	8.40	8.60	ns
TPPos6	Transmitter Output Pulse Position for Bit6	1	9.88	10.	10.28	ns
				08		
TCIP	TxCLK IN Period (Figure 6)		11.76	Т	50	ns
TCIH	TxCLK IN High Time (Figure 6)	0.35T	0.5T	0.65T	ns	
TCIL	TxCLK IN Low Time (Figure 6)		0.35T	0.5T	0.65T	ns
TSTC	TxIN Setup to TxCLK IN (Figure 6)	f = 85 MHz	2.5			ns
THTC	TxIN Hold to TxCLK IN (Figure 6)		0			ns
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C,V _{CC} =3.3V (Figure 8)		3.8		6.3	ns
TPLLS	Transmitter Phase Lock Loop Set (Figure 10)				10	ms
TPDD	Transmitter Powerdown Delay (Figure 13)				100	ns
TJIT	TxCLK IN Cycle-toCycle Jitter (Figure TBD)				2	ns

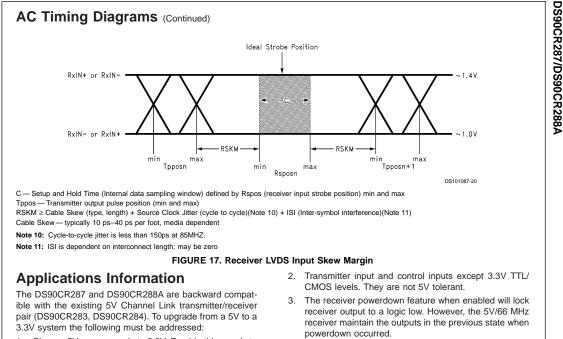

Symbol	Parameter		Min	Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 3)		2	3.5	ns	
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 3)			1.8	3.5	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 16)	f = 85 MHz	0.49	0.84	1.19	ns
RSPos1	Receiver Input Strobe Position for Bit 1		2.17	2.52	2.87	ns
RSPos2	Receiver Input Strobe Position for Bit 2		3.85	4.20	4.55	ns
RSPos3	Receiver Input Strobe Position for Bit 3		5.53	5.88	6.23	ns
RSPos4	Receiver Input Strobe Position for Bit 4		7.21	7.56	7.91	ns
RSPos5	Receiver Input Strobe Position for Bit 5		8.89	9.24	9.59	ns
RSPos6	Receiver Input Strobe Position for Bit 6		10.57	10.92	11.27	ns
RSKM	RxIN Skew Margin (Note 5) (Figure 17)	f = 85 MHz	290			ps
RCOP	RxCLK OUT Period (Figure 7)		11.76	Т	50	ns
RCOH	RxCLK OUT High Time (Figure 7)	f = 85 MHz	4	5	6.5	ns
RCOL	RxCLK OUT Low Time (Figure 7)		3.5	5	6	ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 7)		3.5			ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 7)		3.5			ns
RCCD	RxCLK IN to RxCLK OUT Delay @ 25°C, V _{CC} = 3.3V (No	te 6)(Figure 9)	5.5	7	9.5	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 11)				10	ms
RPDD	Receiver Powerdown Delay (Figure 14)				1	μs


Note 5: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window-RSPOS). This margin allows LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and source clock (less than 150 ps).


Note 6: Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver (RCCD). The total latency for the 217/287 transmitter and 218/288A receiver is: (T + TCCD) + (2*T + RCCD), where T = Clock period.


DS90CR287/DS90CR288A





đ

1. Change 5V power supply to 3.3V. Provide this supply to the V_{CC}, LVDS V_{CC} and PLL V_{CC}.

DS90CR287 Pin Description—Channel Link Transmitter

Pin Name	I/O	No.	Description
TxIN	1	28	TTL level input.
TxOUT+	0	4	Positive LVDS differential data output.
TxOUT-	0	4	Negative LVDS differential data output.
TxCLK IN	1	1	TTL level clock input. The rising edge acts as data strobe. Pin name TxCLK IN.
TxCLK OUT+	0	1	Positive LVDS differential clock output.
TxCLK OUT-	0	1	Negative LVDS differential clock output.
PWR DWN	1	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at power down.
V _{cc}	I	4	Power supply pins for TTL inputs.
GND	1	5	Ground pins for TTL inputs.
PLL V _{CC}	I	1	Power supply pin for PLL.
PLL GND	1	2	Ground pins for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs.
LVDS GND	1	3	Ground pins for LVDS outputs.

DS90CR288A Pin Description—Channel Link Receiver

Pin Name	I/O	No.	Description
RxIN+	1	4	Positive LVDS differential data inputs.
RxIN-	1	4	Negative LVDS differential data inputs.
RxOUT	0	28	TTL level data outputs.
RxCLK IN+	1	1	Positive LVDS differential clock input.
RxCLK IN-	1	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe. Pin name RxCLK OUT.

Applications Information (Continued)

DS90CR288A Pin Description—Channel Link Receiver (Continued)

í	Pin Name	I/O	No.	Description
5	PWR DWN	I	1	TTL level input.When asserted (low input) the receiver outputs are low.
	V _{cc}	Ι	4	Power supply pins for TTL outputs.
8	GND	Ι	5	Ground pins for TTL outputs.
3	PLL V _{CC}	Ι	1	Power supply for PLL.
ו	PLL GND	Ι	2	Ground pin for PLL.
	LVDS V _{CC}	Ι	1	Power supply pin for LVDS inputs.
	LVDS GND	I	3	Ground pins for LVDS inputs.
			•	

The Channel Link devices are intended to be used in a wide variety of data transmission applications. Depending upon the application the interconnecting media may vary. For example, for lower data rate (clock rate) and shorter cable lengths (< 2m), the media electrical performance is less critical. For higher speed/long distance applications the media's performance becomes more critical. Certain cable constructions provide tighter skew (matched electrical length between the conductors and pairs). Twin-coax for example, has been demonstrated at distances as great as TBD meters and with the maximum data transfer of TBD Gbit/s. Additional applications information can be found in the following National Interface Application Notes:

AN = ####	Торіс
AN-1041	Introduction to Channel Link
AN-1108	Channel Link PCB and Interconnect Design-In Guidelines
AN-806	Transmission Line Theory
AN-905	Transmission Line Calculations and Differential Impedance
AN-916	Cable Information

CABLES: A cable interface between the transmitter and receiver needs to support the differential LVDS pairs. The 21bit CHANNEL LINK chipset (DS90CR217/218A) requires four pairs of signal wires and the 28-bit CHANNEL LINK chipset (DS90CR287/288A) requires five pairs of signal wires. The ideal cable/connector interface would have a constant 100 Ω differential impedance throughout the path. It is also recommended that cable skew remain below 140ps (85 MHZ clock rate) to maintain a sufficient data sampling window at the receiver.

In addition to the four or five cable pairs that carry data and clock, it is recommended to provide at least one additional conductor (or pair) which connects ground between the transmitter and receiver. This low impedance ground provides a common mode return path for the two devices. Some of the more commonly used cable types for point-to-point applications include flat ribbon, flex, twisted pair and Twin-Coax. All are available in a variety of configurations and options. Flat ribbon cable, flex and twisted pair generally perform well in short point-to-point applications while Twin-Coax is good for short and long applications. When using ribbon cable, it is recommended to place a ground line between each differential pair to act as a barrier to noise coupling between adjacent pairs. For Twin-Coax cable applications, it is recommended to utilize a shield on each cable pair. All extended point-to-point applications should also employ an overall shield surrounding all cable pairs regardless of the cable type. This overall shield results in improved transmission parameters such as faster attainable speeds, longer distances between transmitter and receiver and reduced problems associated with EMS or EMI.

The high-speed transport of LVDS signals has been demonstrated on several types of cables with excellent results. However, the best overall performance has been seen when using Twin-Coax cable. Twin-Coax has very low cable skew and EMI due to its construction and double shielding. All of the design considerations discussed here and listed in the supplemental application notes provide the subsystem communications designer with many useful guidelines. It is recommended that the designer assess the tradeoffs of each application thoroughly to arrive at a reliable and economical cable solution.

RECEIVER FAILSAFE FEATURE: These receivers have input failsafe bias circuitry to guarantee a stable receiver output for floating or terminated receiver inputs. Under these conditions receiver inputs will be in a HIGH state. If a clock signal is present, data outputs will alb e HIGH; if the clock input is also floating/terminated, data outputs will remain in the last valid state. A floating/terminated clock input will result in a HIGH clock output.

BOARD LAYOUT: To obtain the maximum benefit from the noise and EMI reductions of LVDS, attention should be paid to the layout of differential lines. Lines of a differential pair should always be adjacent to eliminate noise interference from other signals and take full advantage of the noise canceling of the differential signals. The board designer should also try to maintain equal length on signal traces for a given differential pair. As with any high speed design, the impedance discontinuities should be limited (reduce the numbers of vias and no 90 degree angles on traces). Any discontinuities which do occur on one signal line should be mirrored in the other line of the differential pair. Care should be taken to ensure that the differential trace impedance match the differential impedance of the selected physical media (this impedance should also match the value of the termination resistor that is connected across the differential pair at the receiver's input). Finally, the location of the CHANNEL LINK TxOUT/ RxIN pins should be as close as possible to the board edge so as to eliminate excessive pcb runs. All of these considerations will limit reflections and crosstalk which adversely effect high frequency performance and EMI.

UNUSED INPUTS: All unused inputs at the TxIN inputs of the transmitter may be tied to ground or left no connect. All unused outputs at the RxOUT outputs of the receiver must then be left floating.

TERMINATION: Use of current mode drivers requires a terminating resistor across the receiver inputs. The CHANNEL

Applications Information (Continued)

LINK chipset will normally require a single 100 Ω resistor between the true and complement lines on each differential pair of the receiver input. The actual value of the termination resistor should be selected to match the differential mode characteristic impedance (90 Ω to 120 Ω typical) of the cable. *Figure 18* shows an example. No additional pull-up or pulldown resistors are necessary as with some other differential technologies such as PECL. Surface mount resistors are recompanies leaded resistors. These resistors should be placed as close as possible to the receiver input pins to reduce stubs and effectively terminate the differential lines. **DECOUPLING CAPACITORS:** Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a conservative approach three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface mount form factor) between each $V_{\rm CC}$ and the ground plane(s) are recommended. The three capacitor values are 0.1 μ F, 0.01 μ F and 0.001 μ F. An example is shown in *Figure 19*. The designer should employ wide traces for power and ground and ensure each capacitor has its own via to the ground plane. If board space is limiting the number of bypass capacitors, the PLL $V_{\rm CC}$ should receive the most filtering/bypassing. Next would be the LVDS $V_{\rm CC}$ pins and finally the logic $V_{\rm CC}$ pins.

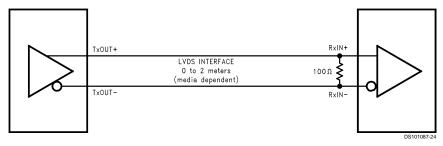
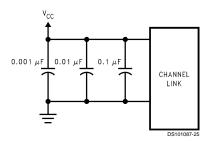
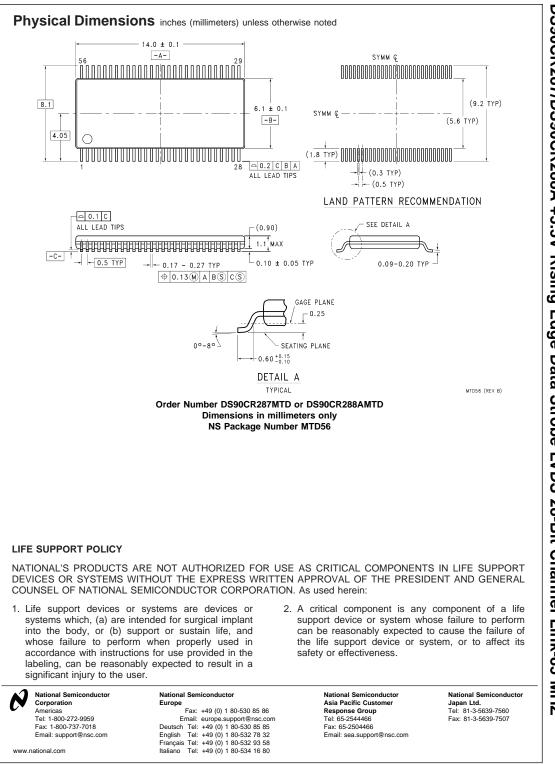



FIGURE 18. LVDS Serialized Link Termination

FIGURE 19. CHANNEL LINK Decoupling Configuration

CLOCK JITTER: The CHANNEL LINK devices employ a PLL to generate and recover the clock transmitted across the LVDS interface. The width of each bit in the serialized LVDS data stream is one-seventh the clock period. For example, a 85 MHZ clock has a period of 11.76 ns which results in a data bit width of 1.68 ns. Differential skew (Δ t of the results in a nother) and clock jitter will all reduce the available window for sampling the LVDS serial data streams. Care must be taken to ensure that the clock input to the transmitter be a clean low noise signal. Individual bypassing of each V_{CC} to ground will minimize the noise passed on to the PLL, thus


creating a low jitter LVDS clock. These measures provide more margin for channel-to-channel skew and interconnect skew as a part of the overall jitter/skew budget.

COMMON MODE vs. DIFFERENTIAL MODE NOISE MAR-GIN: The typical signal swing for LVDS is 300 mV centered at +1.2V. The CHANNEL LINK receiver supports a 100 mV threshold therefore providing approximately 200 mV of differential noise margin. Common mode protection is of more importance to the system's operation due to the differential data transmission. LVDS supports an input voltage range of Ground to +2.4V. This allows for a ±1.0V shifting of the center point due to ground potential differences and common mode noise.

POWER SEQUENCING AND POWERDOWN MODE: Outputs of the CNANNEL LINK transmitter remain in TRI-STATE® until the power supply reaches 2V. Clock and data outputs will begin to toggle 10 ms after V_{CC} has reached 3V and the Powerdown pin is above 1.5V. Either device may be placed into a powerdown mode at any time by asserting the Powerdown pin (active low). Total power dissipation for each device will decrease to 5 μ W (typical).

The CHANNEL LINK chipset is designed to protect itself from accidental loss of power to either the transmitter or receiver. If power to the transmit board is lost, the receiver clocks (input and output) stop. The data outputs (RxOUT) retain the states they were in when the clocks stopped. When the receiver board loses power, the receiver inputs are shorted to V $_{\rm CC}$ through an internal diode. Current is limited (5 mA per input) by the fixed current mode drivers, thus avoiding the potential for latchup when powering the device.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.