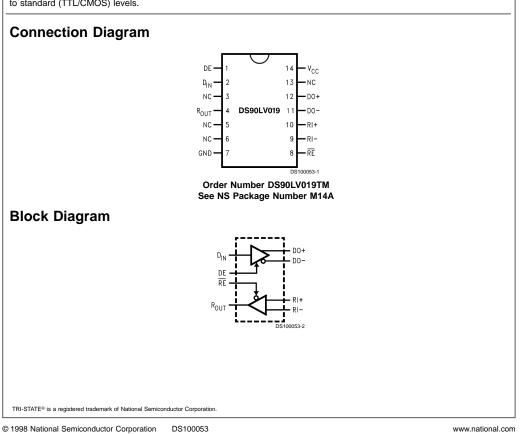
National Semiconductor

DS90LV019 3.3V or 5V LVDS Driver/Receiver

General Description


The DS90LV019 is a Driver/Receiver designed specifically for the high speed low power point-to-point interconnect applications. The device operates from a single 3.3V or 5.0V power supply and includes one differential line driver and one receiver. The DS90LV019 features an independent driver and receiver with TTL/CMOS compatibility (D_{IN} and R_{OUT}). The logic interface provides maximum flexibility as 4 separate lines are provided (D_{IN}, DE, \overline{RE} , and R_{OUT}). The device also features a flow-through pin out which allows easy PCB routing for short stubs between its pins and the connector. The driver has 3.5 mA output loop current.

The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition, the differential signaling provides common-mode noise rejection.

The receiver threshold is $\pm 100 \text{ mV}$ over a $\pm 1\text{V}$ commonmode range and translates the low swing differential levels to standard (TTL/CMOS) levels.

DS90LV019 3.3V or 5V LVDS Driver/Receiver

Features

LVDS Signaling

■ 3.3V or 5.0V operation

Low power CMOS design

Balanced Output Impedance

Ultra Low Power Dissipation

■ ±1V Common-Mode Range

±100 mV Receiver Sensitivity

Product offered in SOIC packageFlow-Through Pin Out

Industrial Temperature Range Operation

Glitch free power up/down (Driver disabled)

High Signaling Rate Capacity (above 100 Mbps)

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage V_{CC}	6.0V			
Enable Input Voltage (DE, RE)	–0.3V to (V _{CC} +0.3V)			
Driver Input Voltage (D _{IN})	–0.3V to (V _{CC} + 0.3V)			
Receiver Output Voltage				
(R _{OUT})	–0.3V to (V _{CC} + 0.3V)			
Driver Output Voltage (DO±)	-0.3V to +3.9V			
Receiver Input Voltage (RI±)	–0.3V to (V _{CC} + 0.3V)			
Driver Short Circuit Current	Continuous			
ESD (Note 4)				
(HBM, 1.5 kΩ, 100 pF)	> 2.0 kV			
(EIAJ, 0 Ω, 200 pF)	> 200 V			
Maximum Package Power Dissipation at 25°C				

SOIC	960 mW
Derate SOIC Package	7.7mW/°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature	
(Soldering, 4 sec.)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC}) or	3.0	3.6	V
Supply Voltage (V _{CC})	4.5	5.5	V
Receiver Input Voltage	0.0	2.4	V
Operating Free Air Temperature T _A	-40	+85	°C

DC Electrical Characteristics

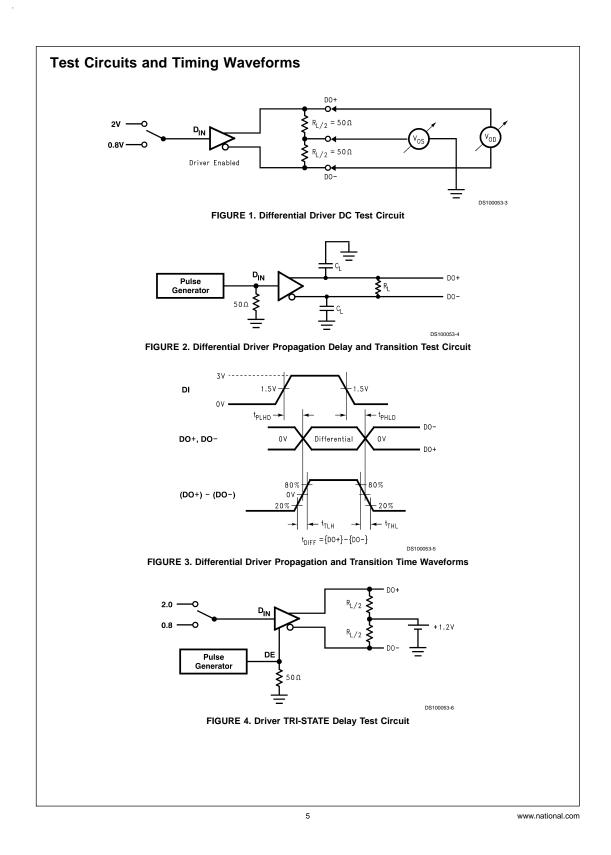
 $T_A = -40^{\circ}C$ to +85°C unless otherwise noted, $V_{CC} = 3.3 \pm 0.3V$. (Notes 2, 3)

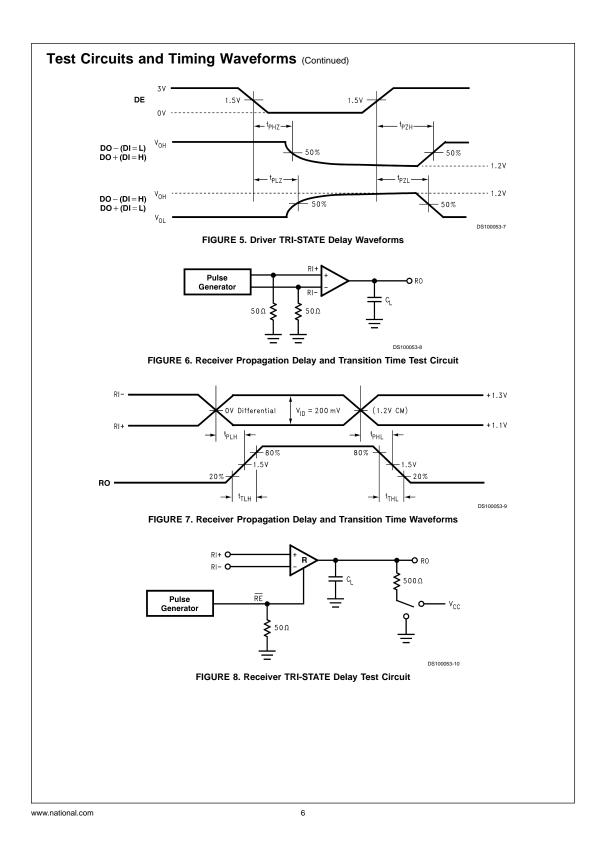
Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
DIFFERE	NTIAL DRIVER CHARACTERIS	rics	•				
V _{OD}	Output Differential Voltage	$R_L = 100\Omega \ (Figure \ 1)$	DO+,	250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change		DO-		6	60	mV
Vos	Offset Voltage			1	1.25	1.7	V
ΔV _{OS}	Offset Magnitude Change				5	60	mV
I _{ozd}	TRI-STATE [®] Leakage	$V_{OUT} = V_{CC}$ or GND, DE = 0V		-10	±1	+10	μA
I _{OXD}	Power-Off Leakage	$V_{OUT} = 3.6V \text{ or GND}, V_{CC} = 0V$		-10	±1	+10	μA
I _{OSD}	Output Short Circuit Current	$V_{OUT} = 0V, DE = V_{CC}$		-10	-6	-4	mA
DIFFERE	NTIAL RECEIVER CHARACTER	ISTICS					
V _{он}	Voltage Output High	VID = +100 mV I _{OH} = -400 μA	R _{OUT}	2.9	3.3		V
		Inputs Open		2.9	3.3		V
V _{OL}	Voltage Output Low	I _{OL} = 2.0 mA, VID = -100 mV			0.1	0.4	V
l _{os}	Output Short Circuit Current	V _{OUT} = 0V		-75	-34	-20	mA
V _{TH}	Input Threshold High		RI+,			+100	mV
V _{TH}	Input Threshold Low		RI–	-100			mV
I _{IN}	Input Current	V_{IN} = +2.4V or 0V, V_{CC} = 3.6V or 0V		-10	±1	+10	μA
DEVICE O	HARACTERISTICS						
VIH	Minimum Input High Voltage		D _{IN} ,	2.0		V _{cc}	V
VIL	Maximum Input Low Voltage		DE, RE	GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC} \text{ or } 2.4V$			±1	±10	μA
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V			±1	±10	μA
V _{CL}	Input Diode Clamp Voltage	$I_{CLAMP} = -18 \text{ mA}$		-1.5	-0.7		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}$	V _{cc}		9	12.5	mA
I _{CCR}		$DE = \overline{RE} = 0V$			4.5	7.0	mA
I _{ccz}		$DE = 0V, \overline{RE} = V_{CC}$			3.7	7.0	mA
I _{cc}		$DE = V_{CC}, \overline{RE} = 0V$			15	20	mA
C _{D output}	Capacitance		DO+, DO-		5		pF
C _{R input}	Capacitance		RI+, RI–		5		pF

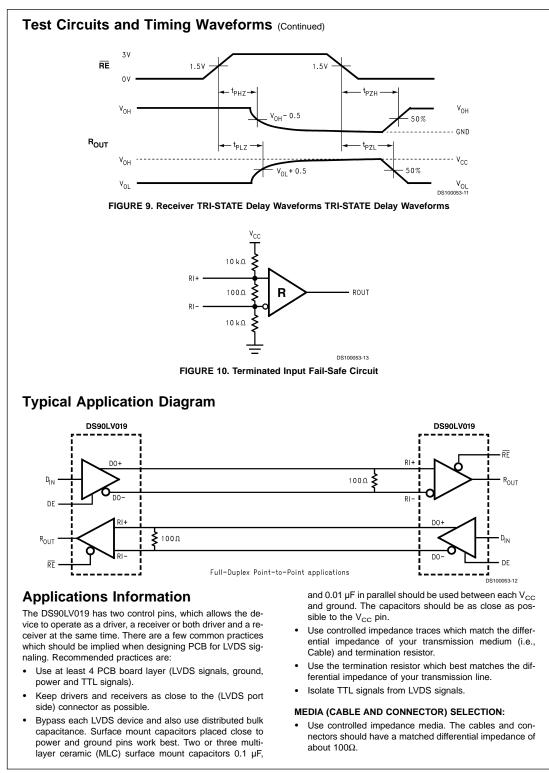
Symbol	°C to +85°C unless otherwise not Parameter	-	onditions	Pin	Min	Тур	Max	Units
						.,,	max	-
V _{OD}	Output Differential Voltage	$R_{\perp} = 100\Omega$ (Fig	aure 1)	DO+,	250	360	450	mV
ΔV _{OD}	V _{OD} Magnitude Change		<u> </u>	DO-		6	60	mV
Vos	Offset Voltage				1	1.25	1.8	V
ΔV _{os}	Offset Magnitude Change	-				5	60	mV
I _{OZD}	TRI-STATE Leakage	V _{OUT} = V _{CC} or	GND, DE = 0V	-	-10	±1	+10	μA
I _{OXD}	Power-Off Leakage		GND, $V_{CC} = 0V$		-10	±1	+10	μA
I _{OSD}	Output Short Circuit Current	V _{OUT} = 0V, DE			-10	-6	-4	mA
	NTIAL RECEIVER CHARACTER							
V _{он}	Voltage High	VID = +100 m\	/ I _{OH} = -400 μA	R _{OUT}	4.3	5.0		V
011		Inputs Open		001	4.3	5.0		V
Vol	Voltage Output Low	I _{OL} = 2.0 mA, \	/ID = -100 mV			0.1	0.4	V
los	Output Short Circuit Current	V _{OUT} = 0V		1	-150	-75	-40	mA
V _{TH}	Input Threshold High			RI+,			+100	mV
V _{TH}	Input Threshold Low			RI-	-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V$ or	0V, V _{CC} = 5.5V or	7	-15	±1	+15	μA
	-	0V						-
DEVICE (HARACTERISTICS							
VIH	Minimum Input High Voltage			D _{IN} ,	2.0		V _{cc}	V
VIL	Maximum Input Low Voltage			DE ,RE	GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4 V				±1	±10	μΑ
I _{IL}	Input Low Current	V _{IN} = GND or 0).4V			±1	±10	μA
V _{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 n	nA		-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CO}$	>	V _{cc}		12	19	mA
I _{CCR}		$DE = \overline{RE} = 0V$				5.8	8	mA
I _{ccz}		$DE = 0V, \overline{RE} =$	V _{cc}			4.5	8.5	mA
I _{CC}		$DE = V_{CC}, \overline{RE}$	= 0V			18	48	mA
C _{D output}	Capacitance			DO+, DO-		5		pF
C _{R input}	Capacitance			RI+, RI–		5		pF
be operate Note 2: Al Note 3: A Note 4: ES HBM (EIAJ (bsolute Maximum Ratings" are these beyo d at these limits. The table of "Electrical CI I currents into device pins are positive; all cu II typicals are given for V_{CC} = +3.3V or +5. 5D Rating: 1.5 kΩ, 100 pF) > 2.0 kV $\Omega\Omega$, 200 pF) > 200V. includes probe and fixture capacitance.	naracteristics" provides irrents out of device pir 0V and T _A = +25°C, u	: conditions for actual device is are negative. All voltages nless otherwise stated.	e operation. are referenced	to device gr			
Note 6: Ge	enerator waveforms for all tests unless oth	tics						
Note 6 : Ge		tics	Conditions	Mir	<u>n T</u>	yp	Max	Units
Note 6: Get ACE $T_A = -40$ Symbol	lectrical Characteris 0°C to +85°C, V _{CC} = 3.3V ± 0.3V.	tics	Conditions	Miı	ו די	yp	Max	Units
Note 6: Get ACE $T_A = -40$ Symbol	lectrical Characteris 0°C to +85°C, V _{CC} = 3.3V ± 0.3V. Parameter	tics (Note 6)	R _L = 100Ω,	Min 2.0		/p	Max 6.5	Units
Note 6: Get AC E $T_A = -40$ Symbol DRIVER 1	Iectrical Characteris o'C to +85°C, V _{CC} = 3.3V ± 0.3V. Parameter IMING REQUIREMENTS	tics (Note 6) High to Low	$R_{L} = 100Ω,$ $C_{L} = 10 \text{ pF}$	2.0) 4		ł	
Note 6: Generation \mathbf{ACEE} $T_A = -40$ Symbol DRIVER 1 t_{PHLD}	Iectrical Characteris o'C to +85'C, V _{CC} = 3.3V ± 0.3V. Parameter TIMING REQUIREMENTS Differential Propagation Delay	High to Low	R _L = 100Ω,	2.0) 4	.0	6.5	ns
Note 6: Get AC = C $T_A = -40$ Symbol DRIVER T t_{PHLD} t_{PLHD}	Iectrical Characteris o'C to +85'C, V _{CC} = 3.3V ± 0.3V. Parameter TIMING REQUIREMENTS Differential Propagation Delay Differential Propagation Delay	High to Low	$R_{L} = 100Ω,$ $C_{L} = 10 \text{ pF}$	2.0) 4) 5 0	.0 .6	6.5 7.0	ns ns

. .

AC Electrical Characteristics (Continued)


 $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 3.3V \pm 0.3V$. (Note 6)


· ·


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
DRIVER TIMING REQUIREMENTS							
t _{PHZ}	Disable Time High to Z	R _L = 100Ω,	1.5	4.0	8.0	ns	
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	2.5	5.3	9.0	ns	
t _{PZH}	Enable Time Z to High	(Figure 4 and Figure 5)	4.0	6.0	8.0	ns	
t _{PZL}	Enable Time Z to Low		3.5	6.0	8.0	ns	
RECEIVE	R TIMING REQUIREMENTS						
t _{PHLD}	Differential Propagation Delay High to Low	C _L = 10 pF,	3.0	5.8	7.0	ns	
t _{PLHD}	Differential Propagation Delay Low to High	VID = 200 mV	3.0	5.6	9.0	ns	
t _{skD}	Differential Skew t _{PHLD} - t _{PLHD}	(Figure 6 and Figure 7)		0.55	1.5	ns	
t _r	Rise Time		0.15	2.0	3.0	ns	
t _f	Fall Time		0.15	0.9	3.0	ns	
t _{PHZ}	Disable Time High to Z	R _L = 500Ω,	3.0	4.0	6.0	ns	
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	3.0	4.5	6.0	ns	
t _{PZH}	Enable Time Z to High	(Figure 8 and Figure 9)	3.0	6.0	8.0	ns	
t _{PZL}	Enable Time Z to Low	7	3.0	6.0	8.0	ns	

AC Electrical Characteristics $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5.0V \pm 0.5V. \text{ (Note 6)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER T	IMING REQUIREMENTS					
t _{PHLD}	Differential Propagation Delay High to Low	R _L = 100Ω,	2.0	3.3	6.0	ns
t _{PLHD}	Differential Propagation Delay Low to High	C _L = 10 pF	1.0	3.3	5.0	ns
t _{skD}	Differential Skew t _{PHLD} - t _{PLHD}	(Figure 2 and Figure 3)		0.6	1.0	ns
t _{TLH}	Transition Time Low to High		0.15	0.9	3.0	ns
t _{THL}	Transition Time High to Low		0.15	1.2	3.0	ns
t _{PHZ}	Disable Time High to Z	R _L = 100Ω,	1.5	3.5	7.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	3.0	5.2	9.0	ns
t _{PZH}	Enable Time Z to High	(Figure 4 and Figure 5)	2.0	4.5	7.0	ns
t _{PZL}	Enable Time Z to Low		2.0	4.5	7.0	ns
RECEIVE	R TIMING REQUIREMENTS					
t _{PHLD}	Differential Propagation Delay High to Low	C _L = 10 pF,	3.0	6.0	8.0	ns
t _{PLHD}	Differential Propagation Delay Low to High	VID = 200 mV	3.0	5.6	8.0	ns
t _{skD}	Differential Skew t _{PHLD} - t _{PLHD}	(Figure 6 and Figure 7)		0.7	1.6	ns
t _r	Rise Time		0.15	0.8	3.0	ns
t _f	Fall Time		0.15	0.8	3.0	ns
t _{PHZ}	Disable Time High to Z	R _L = 500Ω,	3.0	3.5	4.5	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	3.5	3.6	7.0	ns
t _{PZH}	Enable Time Z to High	(Figure 8 and Figure 9)	3.0	5.0	7.0	ns
t _{PZL}	Enable Time Z to Low		3.0	5.0	7.0	ns

Applications Information (Continued)

- Balanced cables (e.g., twisted pair) are usually better than unbalanced cables (ribbon cable, simple coax) for noise reduction and signal quality.
- For cable distances < 0.5m, most cables can be made to work effectively. For distances $0.5m \le d \le 10m$, CAT 3 (category 3) twisted pair cable works well and is readily available and relatively inexpensive. For distances > 10m, and high data rates CAT 5 twisted pair is recommended.
- · There are three Fail-Safe scenarios, open input pins, shorted inputs pins and terminated input pins. The first case is guaranteed for DS90LV019. A HIGH state on R_{OUT} pin can be achieved by using two external resistors (one to V_{CC} and one to GND) per *Figure 10* (Terminated Input Fail-Safe Circuit). R1 and R2 should be R_T to limit the loading to the LVDS driver . R_T is selected to match the impedance of the cable.

TABLE 1. Functional Table

MODE SELECTED	DE	RE
DRIVER MODE	н	н
RECEIVER MODE	L	L
TRI-STATE MODE	L	н
FULL DUPLEX MODE	Н	L

TABLE 2. Transmitter Mode

	INPUTS	OUTI	PUTS
DE	DI	DO+	DO-
н	L	L	н
Н	Н	Н	L
Н	2 > & > 0.8	Х	Х
L	Х	Z	Z

7

14

X = High or Low logic state Z = High impedance state L = Low state

GND

 V_{CC}

H = High state

.

TABLE 3. Receiver Mode

INPUTS		OUTPUT
RE	(RI+) – (RI–)	
L	L (< -100 mV)	L
L	H (> +100 mV)	Н
L	100 mV > & > -100 mV	Х
Н	X	Z

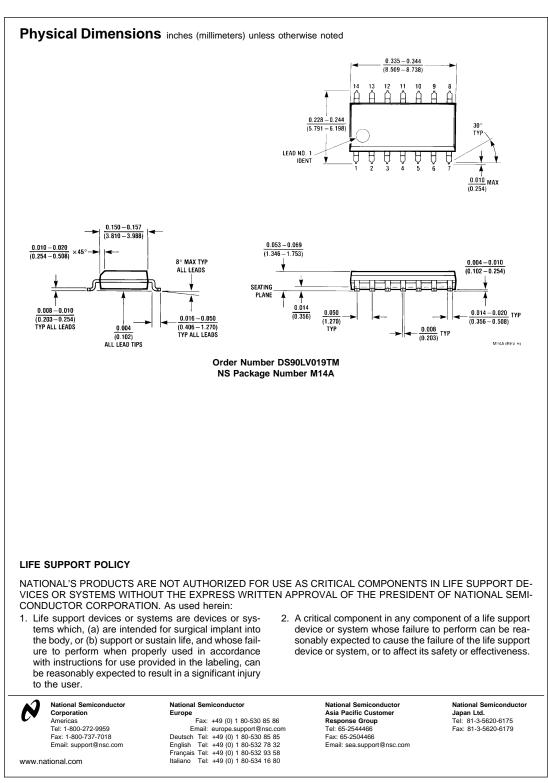
X = High or Low logic state

Z = High impedance state L = Low state

H = High state

TABLE 4. Device Fill Description						
Pin Name	Pin #	Input/Output	Description			
D _{IN}	2	I	TTL Driver Input			
DO±	11, 12	0	LVDS Driver Outputs			
RI±	9, 10	I	LVDS Receiver Inputs			
R _{OUT}	4	0	TTL Receiver Output			
RE	8	I	Receiver Enable TTL Input (Active Low)			
DF	1	1	Driver Enable TTL Input (Active High)			

Ground


Power Supply $(3.3V \pm 0.3V \text{ or } 5.0V \pm 0.5V)$

NA

NA

TABLE / Device Pin Description

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.