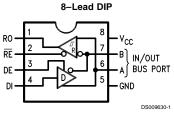
DS96176

RS-485/RS-422 Differential Bus Transceiver

General Description

The DS96176 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA Standard RS-485 as well as RS-422A.

The DS96176 combines a TRI-STATE® differential line driver and a differential input line receiver, both of which operate from a single 5.0V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $\rm V_{CC}=0V.$ These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.


The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current-limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at junction temperature of approximately $160\,^{\circ}\text{C}$. The receiver features a typical input impedance of 15 kΩ, an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The DS96176 can be used in transmission line applications employing the DS96172 and the DS96174 quad differential line drivers and the DS96173 and DS96175 quad differential line receivers.

Features

- Bidirectional transceiver
- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission
- TRI-STATE driver and receiver enables
- Individual driver and receiver enables
- Wide positive and negative input/output bus voltage ranges
- Driver output capability ±60 mA Maximum
- Thermal shutdown protection
- Driver positive and Negative current-limiting
- High impedance receiver input
- Receiver input sensitivity of ±200 mV
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0V supply
- Low power requirements

Connection Diagram

Top View Order Number DS96176CN See NS Package Number N08E

Function Table

Driver

Input	Enable	Outputs		
DI	DE	A B		
Н	Н	Н	L	
L	н	L	Н	
X	L	Z	Z	

See NS Pa

Receiver

Differential Inputs	Enable	Output
A-B	RE	R
V _{ID} ≥ 0.2V	L	Н
$V_{ID} \leq -0.2V$	L	L
X	Н	Z

H = High Level

L = Low Level

X = Immaterial Z = High Impedance (off)

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range
Molded DIP -65°C to +150°C
Lead Temperature

Molded DIP (soldering, 10 sec.)

Maximum Power Dissipation (Note 1) at 25°C Molded Package

Supply Voltage 7.0V
Differential Input Voltage +15V/-10V
Enable Input Voltage 5.5V

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	4.75	5.0	5.25	V
Voltage at Any Bus Terminal				
(Separately or Common Mode)	-7.0		12	V
Differential Input Voltage (VID)			±12	V
Output Current HIGH (I _{OH})				
Driver			-60	mA
Receiver			-400	μΑ
Output Current LOW (I _{OL})				
Driver			60	mA
Receiver			16	mΑ
Operating Temperature (T _A)	0	25	70	°C
Note 1: Derate molded DIP package 7.5 mV	V/°C abov	ve 25°C		

Electrical Characteristics (Notes 3, 4)

Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified

265°C

930 mW

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DRIVER SEC	CTION			•			
V _{IH}	Input Voltage HIGH			2.0			V
V _{IL}	Input Voltage LOW					0.8	V
V _{OH}	Output Voltage HIGH	I _{OH} = -20 mA			3.1		V
V _{OL}	Output Voltage LOW	I _{OL} = 20 mA			0.85		V
V _{IC}	Input Clamp Voltage	I _I = -18 mA				-1.5	V
V _{OD1}	Differential Output Voltage	$I_O = 0 \text{ mA}$				6.0	V
V _{OD2}	Differential Output Voltage	$R_L = 100\Omega$, Figur	re 1	2.0	2.25		V
		$R_L = 54\Omega$, Figure	1 and Figure 2	1.5	2.0		
$\Delta V_{OD2} $	Change in Magnitude of	$R_L = 54\Omega$ $V_{CM} = 0V$ Figure 1 and Figure 2 $R_L = 100\Omega$ Figure 1					
	Differential Output Voltage (Note 5)					±0.2	V
V _{oc}	Common Mode Output Voltage (Note 6)	$R_{L} = 54\Omega \text{ or } 1009$	Ω, Figure 1			3.0	V
$\Delta V_{OC} $	Change in Magnitude of	Magnitude of				±0.2	V
	Common Mode Output Voltage (Note 5)						
Io	Output Current (Note 5)	Output Disabled	V _O = 12V			1.0	mA
	(Includes Receiver I _I)		V _O = -7.0V			-0.8	
I _{IH}	Input Current HIGH	V ₁ = 2.4V				20	μA
I _{IL}	Input Current LOW	V _I = 0.4V				-100	μA
I _{os}	Short Circuit Output Current	$V_{O} = -7.0V$ $V_{O} = 0V$				-250	mA
	(Note 10)					-150	
		$V_O = V_{CC}$				150	
		V _O = 12V				250	
I _{cc}	Supply Current	No Load	Outputs Enabled			35	mA
			Outputs Disabled			40	
RECEIVER S	SECTION						
V _{TH}	Differential Input High	$V_{\rm O}$ = 2.7V, $I_{\rm O}$ = -0.4 mA				0.2	V
	Threshold Voltage						
V _{TL}	Differential Input Low	$V_{\rm O}$ = 0.5V, $I_{\rm O}$ = 8.0 mA		-0.2			V
	Threshold Voltage (Note 7)						
$V_{T+} - V_{T-}$	Hysteresis (Note 8)	V _{CM} = 0V			50		mV
V _{IH}	Enable Input Voltage HIGH			2.0			V
V _{IL}	Enable Input Voltage LOW					0.8	V
V _{IC}	Enable Input Clamp Voltage	I ₁ = -18 mA				-1.5	V

Electrical Characteristics (Notes 3, 4) (Continued)

Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
RECEIVER S	SECTION	•				•	
V _{OH}	Output Voltage HIGH	V_{ID} = 200 mV, I_{OH} = -400 μ A,		2.7			V
		Figure 3					
V _{OL}	Output Voltage LOW	$V_{ID} = -200 \text{ mV},$	I _{OL} = 8,0 mA			0.45	V
		Figure 3	I _{OL} = 16 mA			0.50	
I _{OZ}	High Impedance State Output	V _O = 0.45V to 2.4V				±20	μΑ
I ₁	Line Input Current (Note 9)	Other Input = 0V	V _I = 12V			1.0	mA
			V _I = -7.0V			0.8	
I _{IH}	Enable Input Current HIGH	V _{IH} = 2.7V				20	μΑ
I _{IL}	Enable Input Current LOW	V _{IL} = 0.4V				-100	μΑ
R _I	Input Resistance				12		kΩ
I _{os}	Short Circuit Output Current	(Note 10)		-15		-85	mA
I _{cc}	Supply Current (Total Package)	No Load	Outputs Enabled			40	mA
			Outputs Disabled	1			

Driver Switching Characteristics

 $V_{CC} = 5V, T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{DD}	Differential Output Delay Time	$R_L = 60\Omega$, Figure 4		15	25	ns
t _{TD}	Differential Output Transition Time	$R_L = 60\Omega$, Figure 4		15	25	ns
t _{PLH}	Propagation Delay Time,	$R_L = 27\Omega$, Figure 5		12	20	ns
	Low-to-High Level Output					
t _{PHL}	Propagation Delay Time,	$R_L = 27\Omega$, Figure 5		12	20	ns
	High-to-Low Level Output					
t _{PZH}	Output Enable Time to High Level	$R_L = 110\Omega$, Figure 6		25	35	ns
t _{PZL}	Output Enable Time to Low Level	$R_L = 110\Omega$, Figure 7		25	35	ns
t _{PHZ}	Output Disable Time from High Level	$R_L = 110\Omega$, Figure 6		20	25	ns
t _{PLZ}	Output Disable Time from Low Level	$R_L = 110\Omega$, Figure 7		29	35	ns

Receiver Switching Characteristics

 $V_{CC} = 5.0V, T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Propagation Delay Time,	V _{ID} = 0V to 3.0V		16	25	ns
	Low-to-High Level Output	C _L = 15 pF, <i>Figure 8</i>				
t _{PHL}	Propagation Delay Time,			16	25	ns
	High-to-Low Level Output					
t _{PZH}	Output Enable Time to High Level	C _L = 15 pF, Figure 9		15	22	ns
t _{PZL}	Output Enable Time to Low Level			15	22	ns
t _{PHZ}	Output Disable Time from High Level	C _L = 5.0 pF, <i>Figure 9</i>		14	30	ns
t _{PLZ}	Output Disable Time from Low Level			24	40	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual operation.

Note 3: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS96176. All typicals are given for V_{CC} = 5V and T_A = 25°C.

Note 4: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 5: $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

Note 6: In EIA Standards RS-422A and RS-485, V_{OC} , which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS} .

Note 7: The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.

Note 8: Hysteresis is the difference between the positive-going input threshold voltage V_{T+}, and the negative-going input threshold voltage, V_{T-}.

Receiver Switching Characteristics (Continued)

Note 9: Refer to EIA Standard RS-485 for exact conditions.

Note 10: Only one output at a time should be shorted.

Parameter Measurement Information

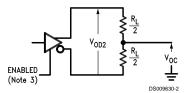


FIGURE 1. Driver $\rm V_{\rm OD}$ and $\rm V_{\rm OC}$

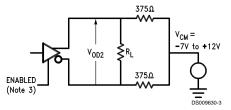


FIGURE 2. Driver $V_{\rm OD}$ with Varying Common Mode Voltage

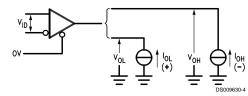
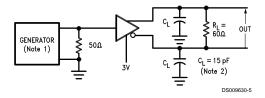



FIGURE 3. Receiver $\rm V_{OH}$ and $\rm V_{OL}$

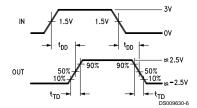
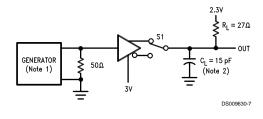



FIGURE 4. Driver Differential Output Delay and Transition Times

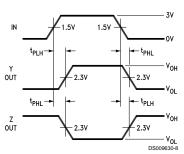


FIGURE 5. Driver Propagation Times

Parameter Measurement Information (Continued)

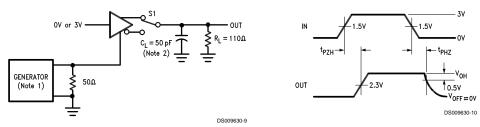


FIGURE 6. Driver Enable and Disable Times ($t_{\rm PZH},\,t_{\rm PHZ}$)

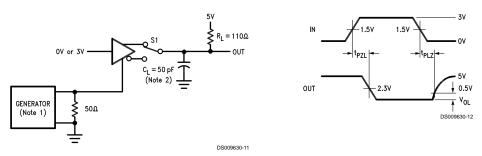


FIGURE 7. Driver Enable and Disable Times ($t_{PZL},\,t_{PLZ}$)

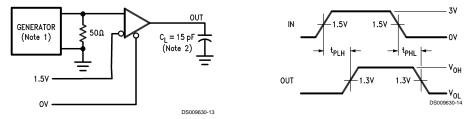
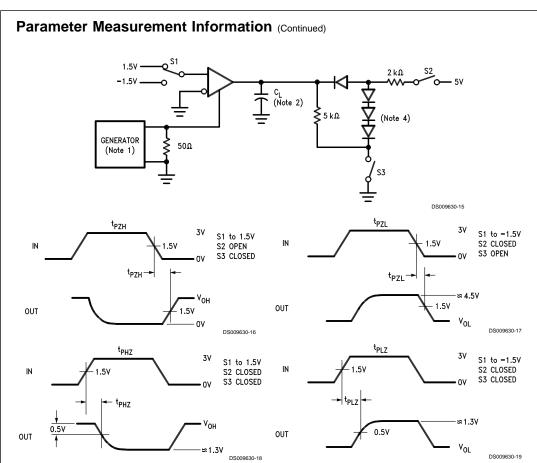
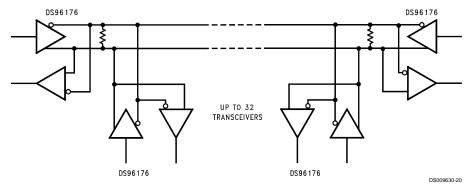



FIGURE 8. Receiver Propagation Delay Times

Note 11: The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, 50% duty cycle, $t_r \le 6.0$ ns, $Z_O = 50\Omega$.

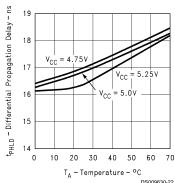

Note 12: C_L includes probe and stray capacitance.

Note 13: DS96176 Driver enable is Active-High.

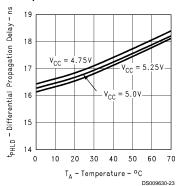
Note 14: All diodes are 1N916 or equivalent.

FIGURE 9. Receiver Enable and Disable Times

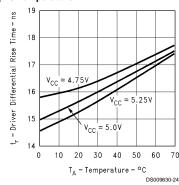
Typical Application

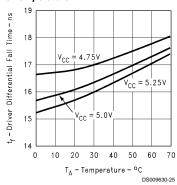


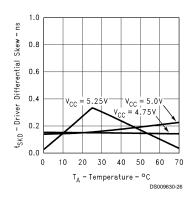
Note: The line length should be terminated at both ends of its characteristic impedance. Stub lengths off the main line should be kept as short as possible.


FIGURE 10.

Typical Performance Characteristics


Driver Differential Propagation Delay vs $\rm V_{\rm CC}$ vs Temperature


Driver Differential Propagation Delay vs V_{CC} vs Temperature


Driver Differential Rise Time vs V_{CC} vs Temperature

Driver Differential Fall Time vs $V_{\rm CC}$ vs Temperature

Driver Skew vs V_{CC} vs Temperature $(|t_{PLDH}-t_{PHLD}|)$

Typical Performance Characteristics (Continued)

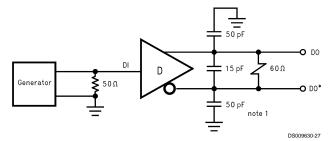


FIGURE 11. Typical Curve Driver Propagation Delay Test Circuit

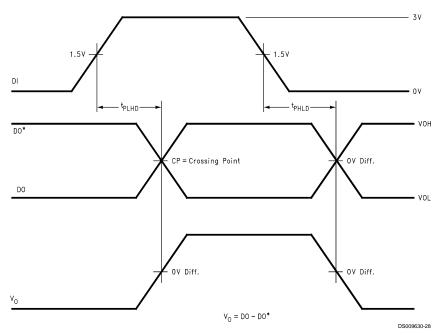


FIGURE 12. Typical Curve Driver Differential Propagation Delay Timing

www.national.com

Typical Performance Curves

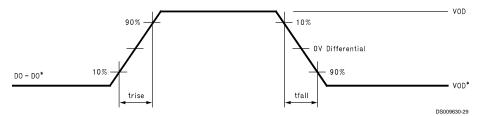
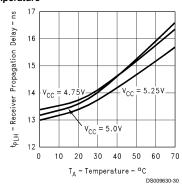
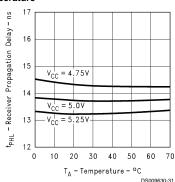
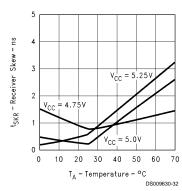




FIGURE 13. Typical Curve Driver Differential Rise and Fall Times


Receiver Propagation Delay vs $V_{\rm CC}$ vs Temperature

Receiver Propagation Delay vs $V_{\rm CC}$ vs Temperature

Receiver Skew vs $\rm V_{CC}$ vs Temperature ($|t_{\rm PLH} - t_{\rm PHL}|)$

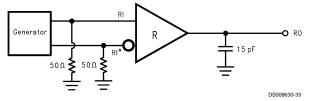


FIGURE 14. Typical Curve Receiver Differential Propagation Delay Test Circuit

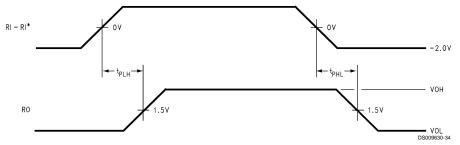
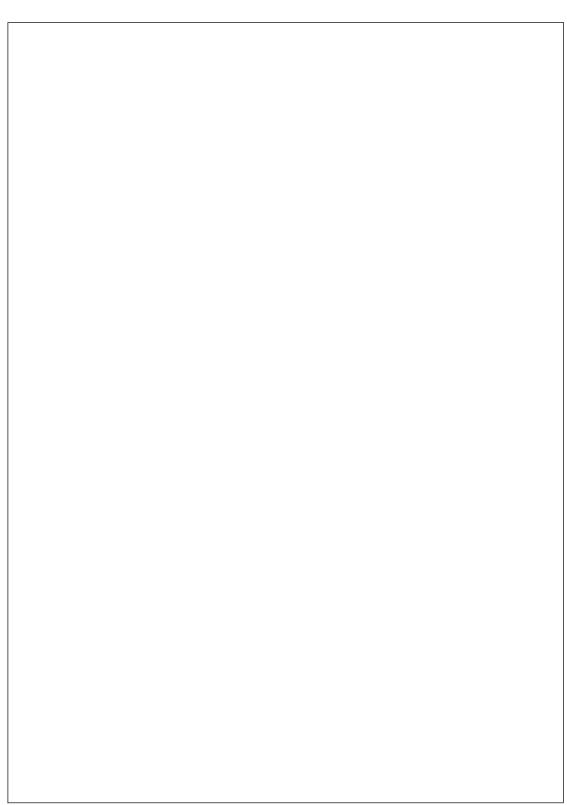
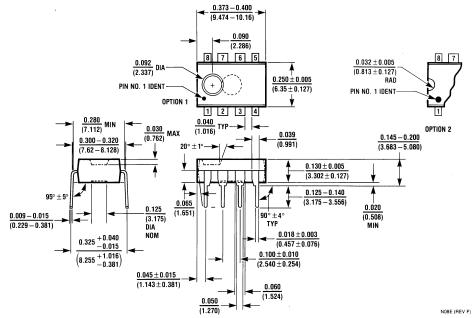




FIGURE 15. Typical Curve Receiver Propagation Delay Timing

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual-In-Line Package (N) Order Number DS96176CN NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 88
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179