

1.8V DC Electrical Characteristics
 (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=1.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6)	Units
V_{O}	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 0.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	1.7	$\begin{aligned} & \hline 1.65 \\ & 1.63 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.075	$\begin{aligned} & 0.090 \\ & 0.105 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 0.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	1.77	$\begin{aligned} & 1.75 \\ & 1.74 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.025	$\begin{aligned} & 0.035 \\ & 0.040 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
l_{0}	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV} \end{aligned}$	6	$\begin{gathered} \hline 4 \\ 3.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=-100 \mathrm{mV}$	10	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

1.8V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=1.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 M \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Typ $($ Note 5$)$	Units	
SR	Slew Rate	$($ Note 7)	0.39	$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		60	Deg.
G_{m}	Gain Margin		10	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	45	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=+1$		
$\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PP}}$		0.089	$\%$	
	(Note 8)	140	dB	

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Condition	$\begin{gathered} \hline \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6)	Units
V_{OS}	Input Offset Voltage	LMV921 (Single)	-1.6	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
		LMV922 (Dual) LMV924 (Quad)	-1.6	$\begin{gathered} 8 \\ 9.5 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		12	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	nA max
los	Input Offset Current		2	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	nA \max

2.7V DC Electrical Characteristics (Continued)					
Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.					
Symbol	Parameter	Condition	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Limits (Note 6)	Units
$\mathrm{I}_{\text {S }}$	Supply Current	LMV921 (Single)	147	$\begin{aligned} & 190 \\ & 210 \end{aligned}$	uA max
		LMV922 (Dual)	380	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	
		LMV924 (Quad)	580	$\begin{aligned} & 750 \\ & 900 \end{aligned}$	
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.5 \mathrm{~V}$	84	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & -0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}}<2.9 \mathrm{~V} \end{aligned}$	73	50	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	78	$\begin{aligned} & \hline 67 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			3.050	$\begin{aligned} & \hline 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain LMV921 (Single)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	98	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	103	$\begin{aligned} & 83 \\ & 77 \end{aligned}$	
	Large Signal Voltage Gain LMV922 (Dual) LMV924 (Quad)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	86	$\begin{aligned} & 68 \\ & 63 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	91	$\begin{aligned} & 71 \\ & 65 \\ & \hline \end{aligned}$	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	2.62	$\begin{aligned} & 2.550 \\ & 2.530 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.075	$\begin{aligned} & 0.095 \\ & 0.115 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	2.675	$\begin{aligned} & 2.650 \\ & 2.640 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.025	$\begin{aligned} & 0.040 \\ & 0.045 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{0}	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV} \end{aligned}$	27	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=-100 \mathrm{mV}$	28	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $R_{L}>1 M \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ $($ Note 5)	Units
SR	Slew Rate	(Note 7)	0.41	$\mathrm{~V} / \mathrm{s}$
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		65	Deg.
G_{m}	Gain Margin		10	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	45	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6)	Units
$\mathrm{V}_{\text {O }}$	Output Swing	$\begin{aligned} & R_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV} \end{aligned}$	4.895	$\begin{aligned} & 4.865 \\ & 4.840 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.1	$\begin{aligned} & 0.135 \\ & 0.160 \end{aligned}$	V \max
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	4.965	$\begin{aligned} & 4.945 \\ & 4.935 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.035	$\begin{aligned} & 0.065 \\ & 0.075 \end{aligned}$	V max
I_{0}	Output Short Circuit Current	LMV921 Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$	98	$\begin{aligned} & 85 \\ & 68 \end{aligned}$	
		LMV922, LMV924 Sourcing, $\mathrm{V}_{\mathrm{O}}=$ OV $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$	60	35	min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=-100 \mathrm{mV}$	75	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $R_{L}>1 M \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	Units
SR	Slew Rate	(Note 7)	0.45	V/us
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		70	Deg.
G_{m}	Gain Margin		15	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	45	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=+1 \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.069	\%
	Amp-to-Amp Isolation	(Note 8)	140	dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=5 \mathrm{~V}$. Connected as voltage follower with 5 V step input. Number specified is the slower of the positive and negative slew rates.
Note 8: Input referred, $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 2.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{PP}}$.

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Input Bias Current
vs. $V_{C M}$

Sourcing Current vs.

Output Voltage

Sinking Current vs.
Output Voltage

Sourcing Current vs. Output Voltage

Sinking Current vs.
Output Voltage

Offset Voltage vs.
Common Mode Voltage

Typical Performance Characteristics Unless otherwise speciiied, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Offset Voltage vs.
Common Mode Voltage

Output Voltage Swing vs.
Supply Voltage

Gain and Phase Margin
vs. Frequency

Offset Voltage vs.
Common Mode Voltage

Gain and Phase Margin
vs. Frequency

Gain and Phase Margin
vs. Frequency

Output Voltage Swing vs. Supply Voltage

Gain and Phase Margin
vs. Frequency

Gain and Phase Margin
vs. Frequency

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Input Current Noise vs.
Frequency

Slew Rate vs.
Supply Voltage

PSRR vs.
Frequency

THD vs.
Frequency

Small Signal
Non-Inverting Response

Input Voltage Noise vs.
Frequency

THD vs.
Frequency

Small Signal
Non-Inverting Response

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

*Large Signal Non-Inverting Response

*Large Signal
Inverting Response

*Large Signal
Non-Inverting Response

*Large Signal Inverting Response

Time ($10 \mu \mathrm{~s} / \mathrm{div}$)
DS100979-F9
*Large Signal
Non-Inverting Response

Time ($10 \mu \mathrm{~s} / \mathrm{div}$)
S100979-E

*Large Signal Inverting Response

Time ($10 \mu \mathrm{~s} / \mathrm{div}$)
DS100979-F8
*Large Signal Non-Inverting Response

*For large signal pulse response in the unity gain follower configuration, the input is 5 mV below the positive rail and 5 mV above the negative rail at $25^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. At $-40^{\circ} \mathrm{C}$, input is 10 mV below the positive rail and 10 mV above the negative rail.

Typical Performance Characteristics Unless otherwise speciiied, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

*Large Signal
Inverting Response

*Large Signal

Short Circuit Current vs.
Temperature (sinking)

Short Circuit Current vs. Temperature (sourcing)

*For large signal pulse response in the unity gain follower configuration, the input is 5 mV below the positive rail and 5 mV above the negative rail at $25^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. At $-40^{\circ} \mathrm{C}$, input is 10 mV below the positive rail and 10 mV above the negative rail.

Application Note

1.0 Unity Gain Pulse Response Considerations

The unity-gain follower is the most sensitive configuration to capacitive loading. The LMV921/LMV922/LMV924 family can directly drive 1 nF in a unity-gain with minimal ringing. Direct capacitive loading reduces the phase margin of the amplifier. The combination of the amplifier's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. The pulse response can be improved by adding a pull up resistor as shown in Figure 1

FIGURE 1. Using a Pull-Up Resistor at the Output for Stabilizing Capacitive Loads

Higher capacitances can be driven by decreasing the value of the pull-up resistor, but its value shouldn't be reduced beyond the sinking capability of the part. An alternate approach is to use an isolation resistor as illustrated in Figure 2.

FIGURE 2. Using an Isolation Resistor to Drive Heavy Capacitive Loads

2.0 Input Bias Current Consideration

The LMV921/LMV922/LMV924 family has a bipolar input stage. The typical input bias current $\left(I_{B}\right)$ is $12 n A$. The input bias current can develop a significant offset voltage. This offset is primarily due to I_{B} flowing through the negative feedback resistor, R_{F}. For example, if I_{B} is 50 nA (max room) and R_{F} is $100 \mathrm{k} \Omega$, then an offset voltage of 5 mV will develop (V_{OS} $\left.=I_{B} X R_{F}\right)$. Using a compensation resistor (R_{C}), as shown in Figure 3, cancels this affect. But the input offset current (l l_{Os}) will still contribute to an offset voltage in the same manner.

DS100979-59
FIGURE 3. Canceling the Voltage Offset Effect of Input Bias Current

3.0 Operating Supply Voltage

The LMV921/LMV922/LMV924 family is guaranteed to operate from 1.8 V to 5.0 V . They will begin to function at power voltages as low as 1.2 V at room temperature when unloaded. Start up voltage increases to 1.5 V when the amplifier is fully loaded (600Ω to mid-supply). Below 1.2 V the output voltage is not guaranteed to follow the input. Figure 4 below shows the output voltage vs. supply voltage with the LMV921/LMV922/LMV924 configured as a voltage follower at room temperature.

FIGURE 4.

4.0 Input and Output Stage

The rail-to-rail input stage of this family provides more flexibility for the designer. The LMV921/LMV922/LMV924 use a complimentary PNP and NPN input stage in which the PNP stage senses common mode voltage near V^{-}and the NPN stage senses common mode voltage near V^{+}. The transition from the PNP stage to NPN stage occurs 1 V below V^{+}. Since both input stages have their own offset voltage, the offset of the amplifier becomes a function of the input common mode voltage and has a crossover point at 1 V below V^{+}as shown in the V_{OS} vs. V_{CM} curves.

Application Note (Continued)

This V_{OS} crossover point can create problems for both DC and AC coupled signals if proper care is not taken. For large input signals that include the $\mathrm{V}_{\text {Os }}$ crossover point in their dy namic range, this will cause distortion in the output signal. One way to avoid such distortion is to keep the signal away from the crossover. For example, in a unity gain buffer configuration and with $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, a 5 V peak-to-peak signal will contain input-crossover distortion while a 3 V peak-to-peak signal centered at 1.5 V will not contain input-crossover distortion as it avoids the crossover point. Another way to avoid large signal distortion is to use a gain of -1 circuit which avoids any voltage excursions at the input terminals of the amplifier. In that circuit, the common mode DC voltage can be set at a level away from the V_{OS} cross-over point.
For small signals, this transition in V_{OS} shows up as a V_{CM} dependent spurious signal in series with the input signal and can effectively degrade small signal parameters such as gain and common mode rejection ratio. To resolve this problem, the small signal should be placed such that it avoids the $\mathrm{V}_{\text {Os }}$ crossover point.
In addition to the rail-to-rail performance, the output stage can provide enough output current to drive 600Ω loads. Because of the high current capability, care should be taken not to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperature specification.

5.0 Power-Supply Considerations

The LMV921/LMV922/LMV924 are ideally suited for use with most battery-powered systems. The LMV921/LMV922/ LMV924 operate from a single +1.8 V to +5.0 V supply and consumes about $145 \mu \mathrm{~A}$ of supply current per Amplifier. A
high power supply rejection ratio of 78 dB allows the amplifier to be powered directly off a decaying battery voltage extending battery life.
Table 1 lists a variety of typical battery types. Batteries have different voltage ratings; operating voltage is the battery voltage under nominal load. End-of-Life voltage is defined as the voltage at which 100% of the usable power of the battery is consumed. Table 1 also shows the typical operating time of the LMV921.

6.0 Distortion

The two main contributors of distortion in LMV921/LMV922/ LMV924 family is:

1. Output crossover distortion occurs as the output transitions from sourcing current to sinking current.
2. Input crossover distortion occurs as the input switches from NPN to PNP transistor at the input stage.
To decrease crossover distortion:
3. Increase the load resistance. This lowers the output crossover distortion but has no effect on the input crossover distortion.
4. Operate from a single supply with the output always sourcing current.
5. Limit the input voltage swing for large signals between ground and one volt below the positive supply.
6. Operate in inverting configuration to eliminate common mode induced distortion.
7. Avoid small input signal around the input crossover region. The discontinuity in the offset voltage will effect the gain, CMRR and PSRR.

TABLE 1. LMV921 Characteristics with Typical Battery Systems.

Battery Type	Operating Voltage (V)	End-of-Life Voltage (V)	Capacity AA Size (mA - h)	LMV921 Operating time (Hours)
Alkaline	1.5	0.9	1000	6802
Lithium	2.7	2.0	1000	6802
$\mathrm{Ni}-\mathrm{Cad}$	1.2	0.9	375	2551
NMH	1.2	1.0	500	3401

Typical Applications

1.0 Half-wave Rectifier with Rail-To-Ground Output Swing
Since the LMV921 input common mode range includes both positive and negative supply rails and the output can also swing to either supply, achieving half-wave rectifier functions in either direction is an easy task. All that is needed are two external resistors; there is no need for diodes or matched resistors. The half wave rectifier can have either positive or negative going outputs, depending on the way the circuit is arranged.

In Figure 5 the circuit is referenced to ground, while in Figure 6 the circuit is biased to the positive supply. These configurations implement the half wave rectifier since the LMV921 can not respond to one-half of the incoming waveform. It can not respond to one-half of the incoming because the amplifier can not swing the output beyond either rail therefore the output disengages during this half cycle. During the other half cycle, however, the amplifier achieves a half wave that can have a peak equal to the total supply voltage. R_{1} should be large enough not to load the LMV921.

DS 100979-C0

DS100979-C

DS100979-C4

FIGURE 5. Half-Wave Rectifier with Rail-To-Ground Output Swing Referenced to Ground

FIGURE 6. Half-Wave Rectifier with Negative-Going Output Referenced to $\mathbf{V}_{\mathbf{c c}}$

Typical Applications (Continued)
2.0 Instrumentation Amplifier with Rail-To-Rail Input and Output
Using three of the LMV924 Amplifiers, an instrumentation amplifier with rail-to-rail inputs and outputs can be made.
Some manufacturers use a precision voltage divider array of 5 resistors to divide the common mode voltage to get a rail-to-rail input range. The problem with this method is that it also divides the signal, so in order to get unity gain, the amplifier must be run at high loop gains. This raises the noise and drift by the internal gain factor and lowers the input impedance. Any mismatch in these precision resistors reduces the CMRR as well. Using the LMV924 eliminates all of these problems.
In this example, amplifiers A and B act as buffers to the differential stage. These buffers assure that the input imped-
ance is very high and require no precision matched resistors in the input stage. They also assure that the difference amp is driven from a voltage source. This is necessary to maintain the CMRR set by the matching $R_{1}-R_{2}$ with $R_{3}-R_{4}$.
The gain is set by the ratio of R_{2} / R_{1} and R_{3} should equal R_{1} and R_{4} equal R_{2}.
With both rail-to-rail input and output ranges, the input and output are only limited by the supply voltages. Remember that even with rail-to-rail outputs, the output can not swing past the supplies so the combined common mode voltages plus the signal should not be greater that the supplies or limiting will occur. For additional applications, see National Semiconductor application notes AN-29, AN-31, AN-71, and AN-127.

FIGURE 7. Rail-to-rail instrumentation amplifier

SC70-5 Tape Dimensions

SOT23-5 and SC70-5 Tape Format

Tape Format

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader	$0(\mathrm{~min})$	Empty	Sealed
(Start End)	$75(\mathrm{~min})$	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer	$125(\mathrm{~min})$	Empty	Sealed
$($ Hub End $)$	$0(\mathrm{~min})$	Empty	Sealed

SOT23-5 and SC70-5 Reel Dimensions

8 mm	7.00	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-0.00$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W 3

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

Order Number LMV921M5 or LMV921M5X
NS Package Number MA05B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS
MTC 14 (REV C)
14-Pin TSSOP
Order Number LMV924MT or LMV924MTX
NS Package Number MTC14

