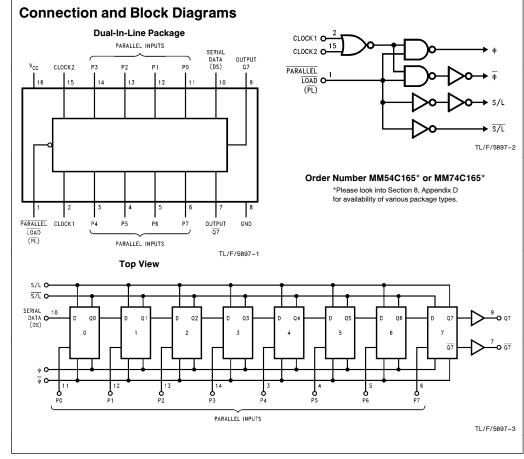
National Semiconductor


MM54C165/MM74C165 Parallel-Load 8-Bit Shift Register

General Description

The MM54C165/MM74C165 functions as an 8-bit parallelload, serial shift register. Data is loaded into the register independent of the state of the clock(s) when PARALLEL LOAD (\overline{PL}) is low. Shifting is inhibited as long as \overline{PL} is low. Data is sequentially shifted from complementary outputs, Q_7 and $\overline{Q_7}$, highest-order bit ($\overline{P7}$) first. New serial data may be entered via the SERIAL DATA (Ds) input. Serial shifting occurs on the rising edge of CLOCK1 or CLOCK2. Clock inputs may be used separately or together for combined clocking from independent sources. Either clock input may be used also as an active-low clock enable. To prevent double-clocking when a clock input is used as an enable, the enable must be changed to a high level (disabled) only while the clock is high.

Features

- Wide supply voltage rangeGuaranteed noise margin
- High noise immunity
- Low power TTL compatibility
- Parallel loading independent of clock
- Dual clock inputs
- Fully static operation

©1995 National Semiconductor Corporation TL/F/5897

RRD-B30M105/Printed in U. S. A.

December 1992

3V to 15V

0.45 V_{CC} (typ.)

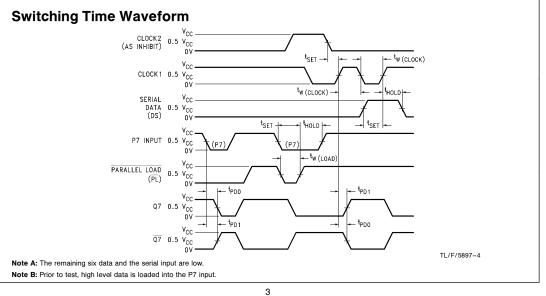
fan out of 2

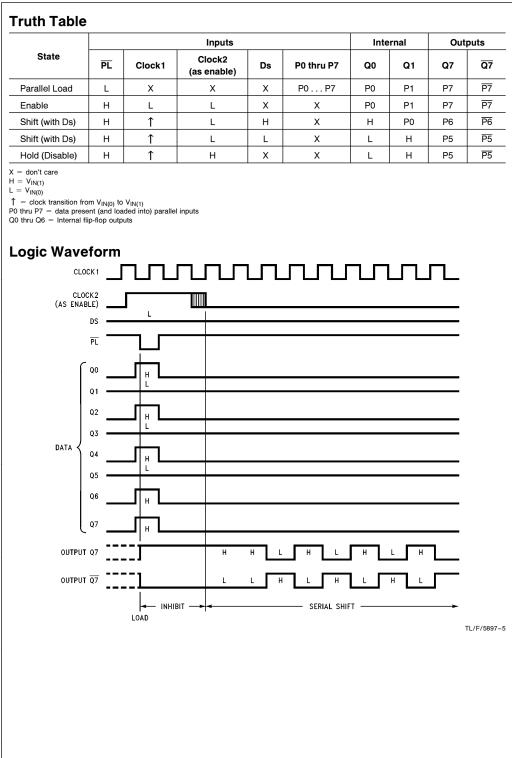
driving 74L

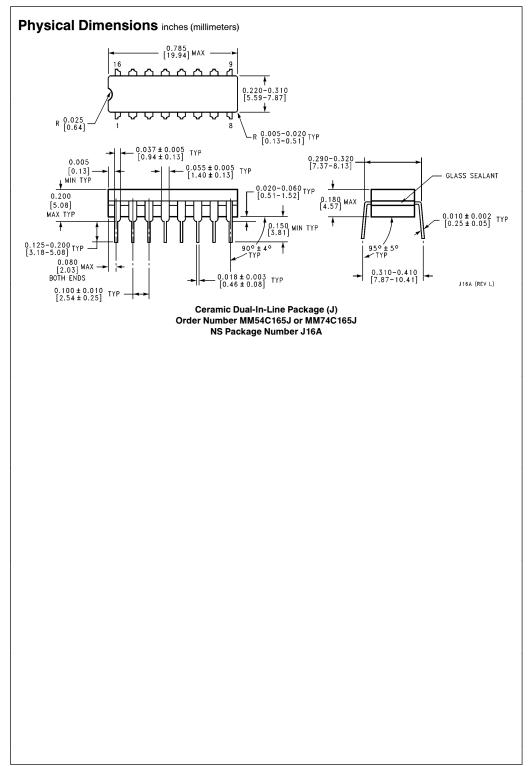
1V

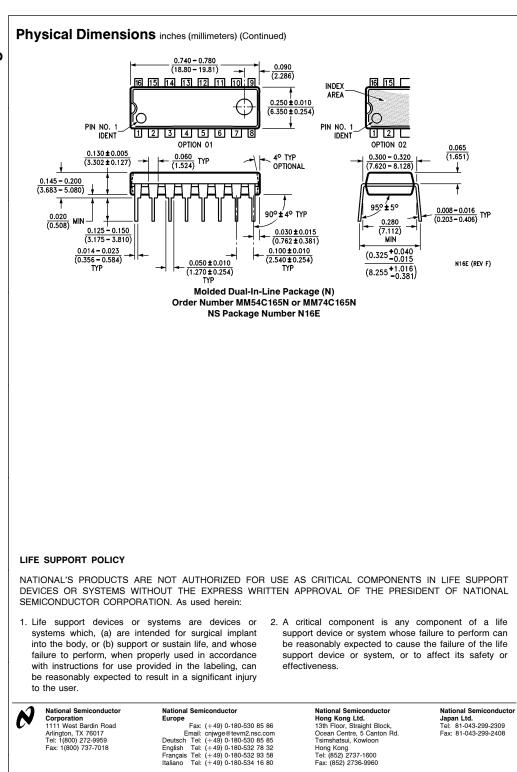
If Military/Aerospace specified devices are required,		Storage Temperature Range		−65°C to +150°C 18V			
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Absolute Maxin				
Voltage at	,	$0.3V$ to $V_{CC} + 0.3V$	Power Dissipat Dual-In-Line	ion		-	700 mW
•	Temperature Range	Small Outline	500 mV				
MM54Č	165	-55°C to +125°C	C to + 125°C Operating V _{CC} Ran			3V to 15	
MM74C	165	-40° C to $+85^{\circ}$ C		ture (Soldering, 10 sec.)		260°0	
DC Ele	ectrical Characteris	tics Min/Max limits	apply across temp	erature range ur	nless otherwi	ise noted	
Symbol	Parameter			Min	Тур	Max	Unit
смоѕ то	CMOS						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$		3.5			V
		$V_{CC} = 10V$		8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$				1.5	v
		$V_{CC} = 10V$				2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_O = -$	•	4.5			V
		$V_{\rm CC} = 10V, I_{\rm O} = -$	–10 μA	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_O = +$				0.5	V
		$V_{CC} = 10V, I_{O} = -$	+10 μA			1.0	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} =$	15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} =$	0V	-1.0	-0.005		μA
ICC	Supply Current	$V_{CC} = 15V$			0.05	300	μA
смоѕ то	LPTTL INTERFACE						
V _{IN(1)}	Logical "1" Input Voltage 54C V _{CC} = 4.5V			V _{CC} – 1.5			V
		74C $V_{CC} = 4.75V$	/	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	54C $V_{CC} = 4.5V$				0.8	V
		74C $V_{CC} = 4.75V$	/			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	54C $V_{CC} = 4.5V$,		2.4			V
		74C $V_{CC} = 4.75V$	/, I _O = −360 μA	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	54C $V_{CC} = 4.5V$,	o ,			0.4	V
		74C $V_{CC} = 4.75V$				0.4	V
OUTPUT	DRIVE (See 54C/74C Family Ch	naracteristics Data SI	heet) (short circui	current)			1
SOURCE	Output Source Current (P-Channel)	V _{CC} = 5V T _A = 25°C, V _{OUT} =	= 0V	- 1.75	-3.3		m/
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V$ T ₁ = 25°C Veve	- 0)/	-8.0	-15		m/
	, ,	$T_A = 25^{\circ}C, V_{OUT} =$					
SINK	Output Sink Current (N-Channel)	$V_{CC} = 5V$ $T_A = 25^{\circ}C, V_{OUT} =$	= V _{CC}	1.75	3.6		m/
ISINK	Output Sink Current	$V_{CC} = 10V$		8.0	16		m/
	(N-Channel)	T _A = 25°C, V _{OUT} =	= Vcc	0.0	10		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical ''0'' or Logical ''1'' from Clock or Load to Q or \overline{Q}	$V_{CC} = 5V$ $V_{CC} = 10V$		200 80	400 200	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical ''0'' or Logical ''1'' from H to Q or \overline{Q}	$V_{CC} = 5V$ $V_{CC} = 10V$		200 80	400 200	ns ns
ts	Clock Inhibit Set-up Time	$V_{CC} = 5V$ $V_{CC} = 10V$	150 60	75 30		ns ns
t _S	Serial Input Set-up Time	$V_{CC} = 5V$ $V_{CC} = 10V$	50 30	25 15		ns ns
t _H	Serial Input Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$	50 30	0 0		ns ns
ts	Parallel Input Set-Up Time	$V_{CC} = 5V$ $V_{CC} = 10V$	150 60	75 30		ns ns
t _H	Parallel Input Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$	50 30	0 0		ns ns
t _W	Minimum Clock Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		70 30	200 100	ns ns
t _W	Minimum Load Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		85 30	180 90	ns ns
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	2.5 5	6 12		MHz MHz
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5V$ $V_{CC} = 10V$	10 5			μs μs
C _{IN}	Input Capacitance	(Note 2)		5		pF
CPD	Power Dissipation Capacitance	(Note 3)		65		pF


*AC Parameters are guaranteed by DC correlated testing.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications