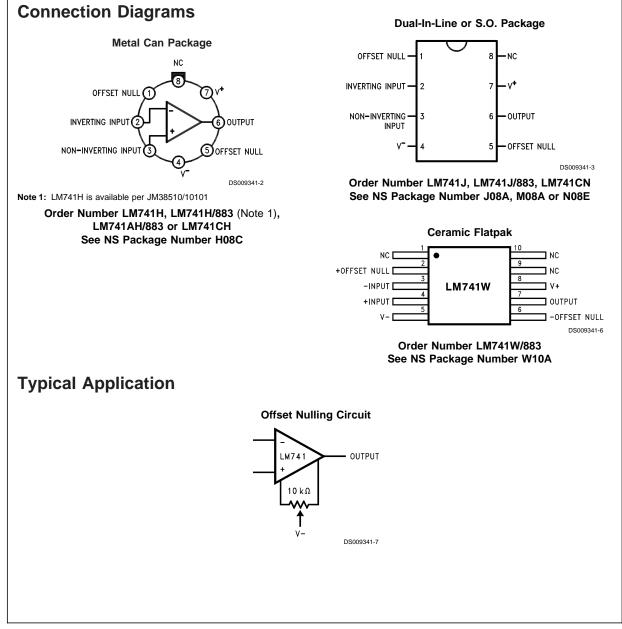
August 2000


National Semiconductor

LM741 Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to +70°C temperature range, instead of -55° C to +125°C.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 7)

	LM741A	LM741	LM741C
Supply Voltage	±22V	±22V	±18V
Power Dissipation (Note 3)	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V
Input Voltage (Note 4)	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous
Operating Temperature Range	–55°C to +125°C	–55°C to +125°C	0°C to +70°C
Storage Temperature Range	–65°C to +150°C	–65°C to +150°C	–65°C to +150°C
Junction Temperature	150°C	150°C	100°C
Soldering Information			
N-Package (10 seconds)	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C
M-Package			
Vapor Phase (60 seconds)	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C
See AN-450 "Surface Mounting Methods a	and Their Effect on Product R	Reliability" for other methods of	fsoldering
surface mount devices.			
ESD Tolerance (Note 8)	400V	400V	400V

Electrical Characteristics (Note 5)

Parameter	Conditions		LM741	Α	LM741		LM741C			Units	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C$										
	$R_{s} \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{s} \le 50\Omega$			4.0							mV
	$R_{s} \le 10 \text{ k}\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	$T_A = 25^{\circ}C$		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	$T_A = 25^{\circ}C$		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \leq T_A \leq T_{AMAX},$	0.5									MΩ
	$V_{S} = \pm 20V$										
Input Voltage Range	$T_A = 25^{\circ}C$							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

www.national.com

LM741

Parameter	Conditions	LM741A		LM741			LM741C		Units		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	50									V/mV
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_L \ge 2 k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				25			15			V/mV
	$V_{\rm S} = \pm 5$ V, $V_{\rm O} = \pm 2$ V	10									V/mV
Output Voltage Swing	$V_{\rm S} = \pm 20 V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	$V_{\rm S} = \pm 15 V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_{L} \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	$T_A = 25^{\circ}C$	10	25	35		25			25		mA
Current	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, V_{CM} = \pm 12 \text{V}$				70	90		70	90		dB
	$R_{S} \le 50\Omega$, $V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \le T_A \le T_{AMAX},$										
Ratio	$V_{\rm S} = \pm 20 \text{V}$ to $V_{\rm S} = \pm 5 \text{V}$										
	$R_{S} \le 50\Omega$	86	96								dB
	R _s ≤ 10 kΩ				77	96		77	96		dB
Transient Response	$T_A = 25^{\circ}C$, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 6)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	$T_A = 25^{\circ}C$, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	$T_A = 25^{\circ}C$					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{\rm S} = \pm 20 V$		80	150							mW
	$V_{\rm S} = \pm 15 V$					50	85		50	85	mW
LM741A	$V_{\rm S} = \pm 20 V$										
	$T_A = T_{AMIN}$			165							mW
	$T_{\Delta} = T_{\Delta M \Delta X}$			135							mW
LM741	$T_{A} = T_{AMAX}$ $V_{S} = \pm 15V$										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW
Note 2: "Absolute Maximum Pat	ings" indicate limits beyond which dam	I age to the	L dovice p		Operating		I		l se for wh	ich the d	

Electrical Characteristics (Note 5) (Continued)

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

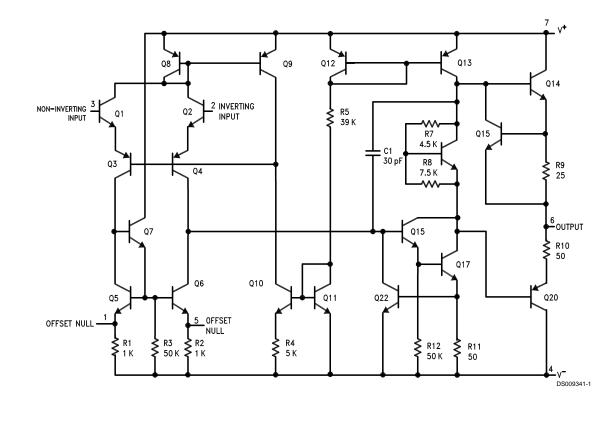
LM741

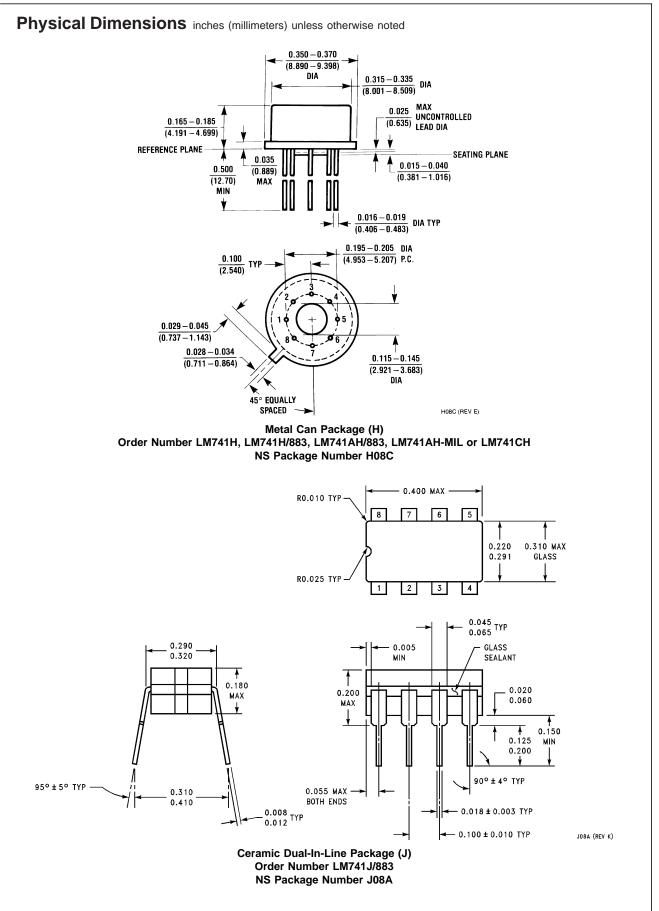
Electrical Characteristics (Note 5) (Continued)

Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ_{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

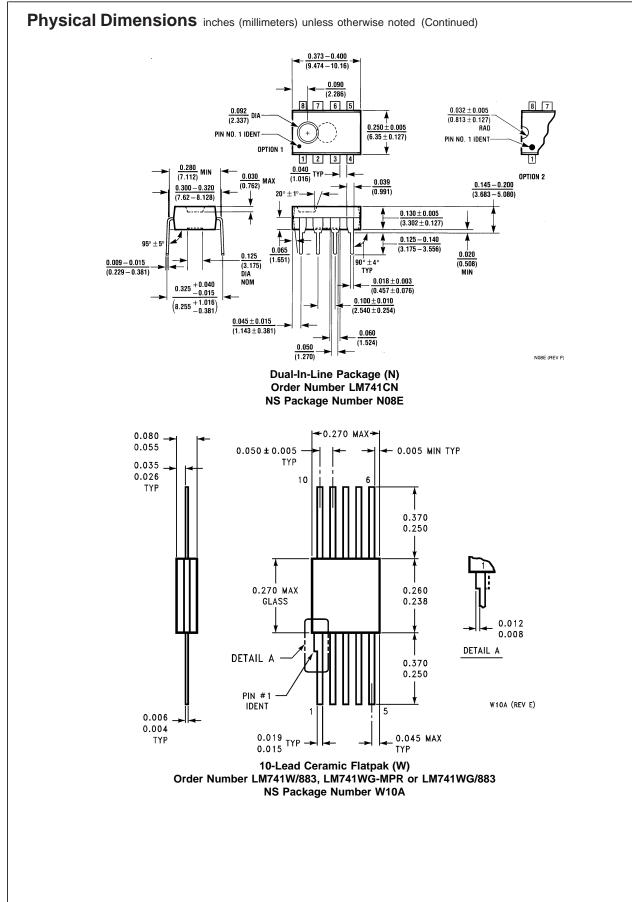

Note 5: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.


Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 8: Human body model, 1.5 k Ω in series with 100 pF.

Schematic Diagram



www.national.com

LM741

LM741

www.national.com

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ø	National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com national.com	National Semiconductor Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Francais Tel: +33 (0) 1 41 91 8790	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507
www.i	national.com	Français Tel: +33 (0) 1 41 91 8790		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.