National Semiconductor

LM9140 Precision Micropower Shunt Voltage Reference

General Description

The LM9140's reverse breakdown voltage temperature coefficients of ±25 ppm/°C are ideal for precision applications. The LM9140's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM9140 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.500V, 4.096V, 5.000V, and 10.000V. The minimum operating current increases from 60 μ A for the LM9140-2.5 to 100 μ A for the LM9140-10.0. All versions have a maximum operating current of 15 mA.

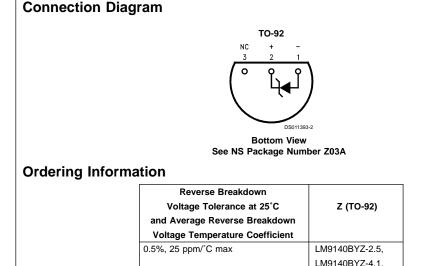
The LM9140 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.5\%$ (B grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Features

- Guaranteed temperature coefficient of ±25 ppm/°C
- Reverse breakdown voltage tolerance of ±0.5%
- Small package: TO-92
- No output capacitor required

- Tolerates capacitive loads
- Fixed reverse breakdown voltages of 2.500V, 4.096V, 5.000V, and 10.000V

Key Specifications


(LM9140-2.5)

- Temperature coefficient: ±25 ppm/°C (max)
- Output voltage tolerance: ±0.5% (max)
- Low output noise (10 Hz to 10 kHz): 35 μV_{rms} (typ)
- Wide operating current range: 60 µA to 15 mA
- Industrial temperature range: -40°C to +85°C

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

LM9140BYZ-5.0, LM9140BYZ-10.0

www.national.com

© 1998 National Semiconductor Corporation DS011393

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Human Boddy Mode (Note 3) Machine Model (Note 3)

Operating Ratings (Notes 1, 2)

Reverse Current	20 mA	Т
Forward Current	10 mA	
Power Dissipation ($T_A = 25^{\circ}C$) (Note 2)		R
Z Package	550 mW	
Storage Temperature	–65°C to +150°C	
Lead Temperature		
Z Package		
Soldering (10 seconds)	+260°C	
ESD Susceptibility		

Temperature Range	
$(T_{min} \le T_A \le T_{max})$	$-40^{\circ}C \le T_A \le +85^{\circ}C$
Reverse Current	
LM9140-2.5	60 µA to 15 mA
LM9140-4.1	68 µA to 15 mA
LM9140-5.0	74 µA to 15 mA
LM9140-10.0	100 µA to 15 mA

2 kV

200V

LM9140BYZ-2.5

Electrical Characteristics

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$

Symbol	Parameter	Conditions	Typical	Limits	Units
			(Note 4)	(Note 5)	(Limit)
V _R	Reverse Breakdown Voltage	I _R = 100 μA	2.500		V
	Reverse Breakdown Voltage	I _R = 100 μA		±12.5	mV (max)
	Tolerance (Note 6)			±16.6	mV (max)
I _{RMIN}	Minimum Operating Current		45		μA
				60	μA (max)
				65	μA (max)
$\Delta V_R / \Delta T$	Average Reverse Breakdown	I _R = 10 mA	±10		ppm/°C
	Voltage Temperature	I _R = 1 mA	±10	±25	ppm/°C (max)
	Coefficient (Note 7)	I _R = 100 μA	±10		ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.3		mV
	Change with Operating			0.8	mV (max)
	Current Change			1.0	mV (max)
		$1 \text{ mA} \le I_R \le 15 \text{ mA}$	2.5		mV
				6.0	mV (max)
				8.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz,	0.3		Ω
		$I_{AC} = 0.1 I_{R}$		0.8	Ω (max)
e _N	Wideband Noise	I _R = 100 μA	35		μV _{rms}
		10 Hz \leq f \leq 10 kHz			
ΔV_R	Reverse Breakdown Voltage	t = 1000 hrs			
	Long Term Stability	$T = 25^{\circ}C \pm 0.1^{\circ}C$	120		ppm
		I _R = 100 μA			

LM9140BYZ-4.1

Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C

Symbol	Parameter	Conditions	Typical	Limits	Units
			(Note 4)	(Note 5)	(Limit)
V _R	Reverse Breakdown Voltage	I _R = 100 μA	4.096		V
	Reverse Breakdown Voltage	I _R = 100 μA		±20.5	mV (max)
	Tolerance (Note 6)			±27.1	mV (max)

Symbol	imits apply for $T_A = T_J = T_{MIN}$ to Parameter	Conditions	Typical (Note 4)	Limits (Note 5)	Units (Limit)
I _{RMIN}	Minimum Operating Current		50	. ,	μΑ
				68	μA (max)
				73	µA (max)
ΔV _R /ΔT	Average Reverse Breakdown	I _R = 10 mA	±10		ppm/°C
	Voltage Temperature	I _R = 1 mA	±10	±25	ppm/°C (max
	Coefficient (Note 7)	I _R = 100 μA	±10		ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.5		mV
	Change with Operating			0.9	mV (max)
	Current Change			1.2	mV (max)
		1 mA ≤ I _R ≤ 15 mA	3.0		mV
				7.0	mV (max)
				10.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz,	0.5		Ω
		$I_{AC} = 0.1 I_{R}$		1.0	Ω(max)
₽ _N	Wideband Noise	I _R = 100 μA	80		μV _{rms}
°N		10 Hz ≤ f ≤ 10 kHz			
ΛVp		4 4000 1			
۵V _R	Reverse Breakdown Voltage	t = 1000 hrs			
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 nrs T = 25°C ±0.1°C	120		ppm
LM914 Electri Boldface	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for $T_A = T_J = T_{MIN}$ to	T = 25°C ±0.1°C I_R = 100 µA T _{MAX} ; all other limits $T_A = T_J$	= 25°C	Limite	
LM914 Electri	Long Term Stability 0BYZ-5.0 cal Characteristics	T = 25°C ±0.1°C I _R = 100 μA		Limits (Note 5)	ppm Units (Limit)
Electri Boldface	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for $T_A = T_J = T_{MIN}$ to	T = 25°C ±0.1°C I_R = 100 µA T _{MAX} ; all other limits $T_A = T_J$	= 25°C Typical		Units
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for $T_A = T_J = T_{MIN}$ to Parameter	T = 25°C ±0.1°C I_R = 100 µA T _{MAX} ; all other limits $T_A = T_J$ Conditions	= 25°C Typical (Note 4)		Units (Limit)
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for $T_A = T_J = T_{MIN}$ to Parameter Reverse Breakdown Voltage	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ Conditions $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4)	(Note 5)	Units (Limit) V
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ Conditions $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4)	(Note 5) ±25.0	Units (Limit) V mV (max)
LM914 Electri Boldface Symbol	Long Term Stability COBYZ-5.0 Cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6)	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ Conditions $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000	(Note 5) ±25.0	Units (Limit) V mV (max) mV (max)
LM914 Electri Boldface Symbol	Long Term Stability COBYZ-5.0 Cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6)	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ Conditions $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000	(Note 5) ±25.0 ±33.1	Units (Limit) V mV (max) mV (max) μΑ
LM914 Electri Boldface Symbol	Long Term Stability COBYZ-5.0 Cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6)	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ Conditions $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000	(Note 5) ±25.0 ±33.1 74	Units (Limit) V mV (max) mV (max) μA μA (max)
LM914 Electri Boldface Symbol	Long Term Stability COBYZ-5.0 Cal Characteristics imits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55	(Note 5) ±25.0 ±33.1 74	Units (Limit) V mV (max) μA μA (max) μA (max) μA (max) ppm/°C
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics imits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 ±10	(Note 5) ±25.0 ±33.1 74 80	Units (Limit) V mV (max) μA μA (max) μA (max) μA (max) ppm/°C
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$ $I_{R} = 10 \ m A$ $I_{R} = 10 \ m A$	= 25°C Typical (Note 4) 5.000 55 ±10 ±10	(Note 5) ±25.0 ±33.1 74 80	Units (Limit) V mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max)
LM914 Electri Boldface Symbol V _R	Long Term Stability OBYZ-5.0 cal Characteristics imits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7)	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$ $I_{R} = 10 \ m A$ $I_{R} = 10 \ m A$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 ±10 ±10 ±10 ±10	(Note 5) ±25.0 ±33.1 74 80	Units (Limit) V mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max ppm/°C
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$ $I_{R} = 10 \ m A$ $I_{R} = 10 \ m A$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 ±10 ±10 ±10 ±10	(Note 5) ±25.0 ±33.1 74 80 ±25	Units (Limit) V mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max ppm/°C mV
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage Change with Operating	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$ $I_{R} = 100 \ \mu A$ $I_{R} = 10 \ m A$ $I_{R} = 10 \ m A$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 ±10 ±10 ±10 ±10	(Note 5) ±25.0 ±33.1 74 80 ±25 1.0	Units (Limit) V mV (max) μA (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max) mV (max)
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage Change with Operating	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 55 ±10 ±10 ±10 ±10 0.5	(Note 5) ±25.0 ±33.1 74 80 ±25 1.0	Units (Limit) V mV (max) μA (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max) mV (max) mV (max)
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics Timits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage Change with Operating	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 55 ±10 ±10 ±10 ±10 0.5	(Note 5) ±25.0 ±33.1 74 80 ±25 1.0 1.4	Units (Limit) V mV (max) mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max) mV (max) mV (max) mV (max)
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 cal Characteristics Timits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage Change with Operating	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; \text{ all other limits } T_{A} = T_{J}$ $Conditions$ $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 55 ±10 ±10 ±10 ±10 0.5	(Note 5) ±25.0 ±33.1 74 80 ±25 1.0 1.4 8.0	Units (Limit) V mV (max) mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max ppm/°C mV mV (max) mV (max) mV (max)
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 Cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage Change with Operating Current Change	$T = 25^{\circ}C \pm 0.1^{\circ}C$ $I_{R} = 100 \ \mu A$ $T_{MAX}; all other limits T_{A} = T_{J}$ Conditions $I_{R} = 100 \ \mu A$	= 25°C Typical (Note 4) 5.000 55 55 ±10 ±10 ±10 ±10 3.5	(Note 5) ±25.0 ±33.1 74 80 ±25 1.0 1.4 8.0	Units (Limit) V mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max ppm/°C mV mV (max) mV (max) mV (max) mV (max)
LM914 Electri Boldface Symbol	Long Term Stability OBYZ-5.0 Cal Characteristics limits apply for T _A = T _J = T _{MIN} to Parameter Reverse Breakdown Voltage Reverse Breakdown Voltage Tolerance (Note 6) Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 7) Reverse Breakdown Voltage Change with Operating Current Change	$\begin{array}{c} T = 25^{\circ}C \pm 0.1^{\circ}C \\ I_{R} = 100 \ \mu A \end{array} \\ \hline T_{MAX}; \ all \ other \ limits \ T_{A} = T_{J} \\ \hline \hline Conditions \\ \hline I_{R} = 100 \ \mu A \\ I_{R} = 100 \ \mu A \\ I_{R} = 100 \ \mu A \\ \hline I_{R} = 100$	= 25°C Typical (Note 4) 5.000 55 55 ±10 ±10 ±10 ±10 3.5	(Note 5) ±25.0 ±33.1 74 80 ±25 1.0 1.4 8.0 12.0	Units (Limit) V mV (max) μA (max) μA (max) μA (max) ppm/°C ppm/°C (max ppm/°C mV mV (max) mV (max) mV (max) mV (max) mV (max)

Electrical Characteristics (Continued)

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$

Symbol	Parameter	Conditions	Typical	Limits	Units
			(Note 4)	(Note 5)	(Limit)
ΔV _R	Reverse Breakdown Voltage	t = 1000 hrs			
	Long Term Stability	$T = 25^{\circ}C \pm 0.1^{\circ}C$	120		ppm
		I _R = 100 μA			

LM9140BYZ-10.0

Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C

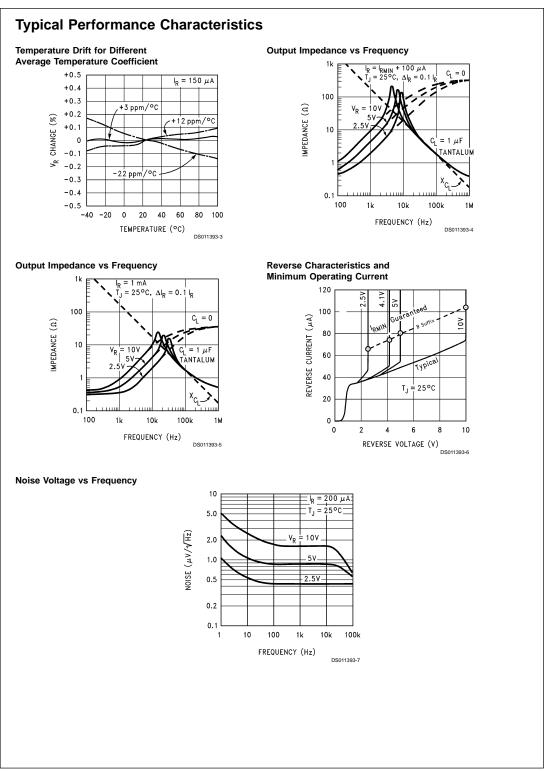
Symbol	Parameter	Conditions	Typical	Limits	Units
			(Note 4)	(Note 5)	(Limit)
V _R	Reverse Breakdown Voltage	I _R = 150 μA	10.00		V
	Reverse Breakdown Voltage	I _R = 100 μA		±50.0	mV (max)
	Tolerance (Note 6)			±66.3	mV (max)
I _{RMIN}	Minimum Operating Current		75		μA
				100	μA (max)
				103	μA (max)
$\Delta V_R / \Delta T$	Average Reverse Breakdown	I _R = 10 mA	±10		ppm/°C
	Voltage Temperature	I _R = 1 mA	±10	±25	ppm/°C (max)
	Coefficient (Note 7)	I _R = 150 μA	±10		ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.8		mV
	Change with Operating			1.6	mV (max)
	Current Change			3.5	mV (max)
		1 mA ≤ I _R ≤ 15 mA	8.0		mV
				12.0	mV (max)
				23.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz,	0.7		Ω
		$I_{AC} = 0.1 I_{R}$		1.7	Ω(max)
e _N	Wideband Noise	I _R = 150 μA	180		μV _{rms}
		10 Hz ≤ f ≤ 10 kHz			
ΔV_R	Reverse Breakdown Voltage	t = 1000 hrs			
	Long Term Stability	$T = 25^{\circ}C \pm 0.1^{\circ}C$	120		ppm
		I _R = 150 μA			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

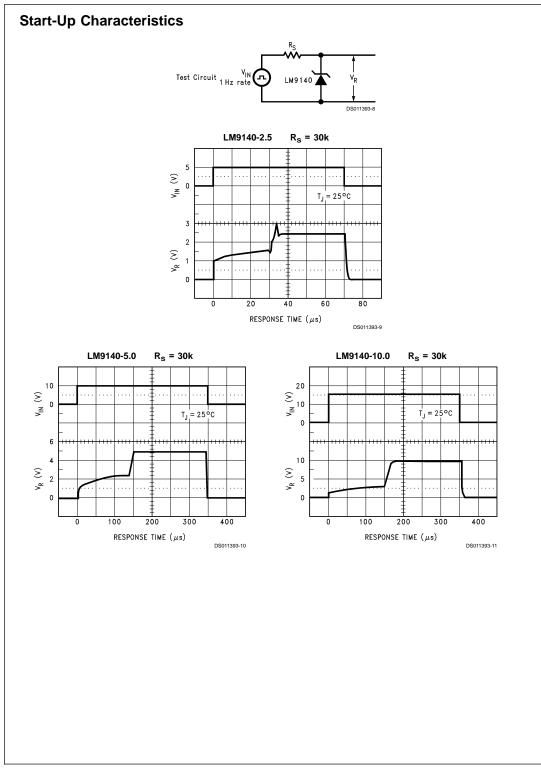
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{MAX} = (T_{Jmax} - T_A)^{\mu}\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM9140, $T_{Jmax} = 125^{\circ}C$, and the typcial thermal resistance (θ_{JA}), when board mounted, is 170°C/W with 0.125° lead length for the TO-92 package.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine mode is a 200 pF capacitor discharged directly into each pin.

Note 4: Typicals are at $T_J = 25^{\circ}C$ and represent most likely parametric norm.

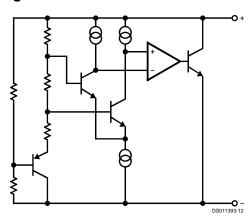

Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as a room termperature Reverse Breakdown Voltage Tolerance $\pm [\Delta V_R/\Delta T)$ (65°C) (V_R)]. $\Delta V_R/\Delta T$ is the V_R temperature coefficient, 65°C is the temperature range from -40°C to the reference point of 25°C, and V_R is the reverse breakdown voltage. The total over-temperature tolerence for the different grades is shown below:


B-grade: ±0.66% = ±0.5% ±25 ppm/°C x 65°C

Therefore, as an example, the B-grade LM9140-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V x 0.66% = ±16.6 mV.

Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating T_{MAX} and T_{MIN} , divided by $T_{MAX} - T_{MIN}$. The measured temperatures are -55°C, -40°C, 0°C, 25°C, 70°C, 85°C and 125°C.



5

6

Functional Block Diagram

Applications Information

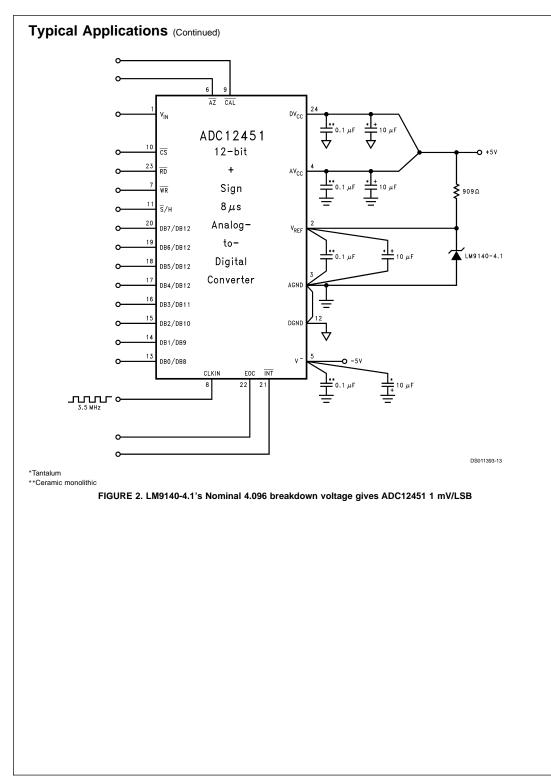
The LM9140 is a precision micro-power curvature-corrected bandgap shunt voltage reference. The LM9140 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM9140 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.500V, 4.096V, 5.000V, and 10.000V. The minimum operating current increases from 60 μ A for the LM9140-2.5 to 100 μ A for the LM9140-10.0. All versions have a maximum operating current of 15 mA.

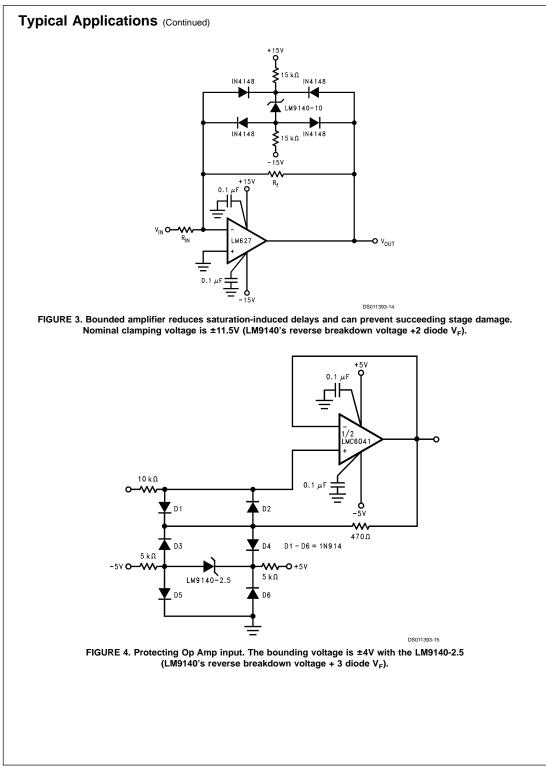
The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB.

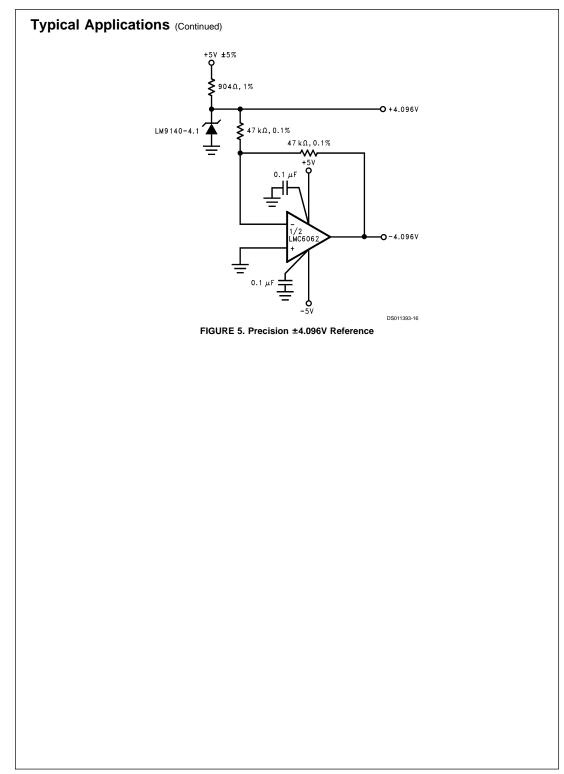
In a conventional shunt regulator application (Figure 1), an external series resistor ($R_{\rm S})$ is connected between the sup-

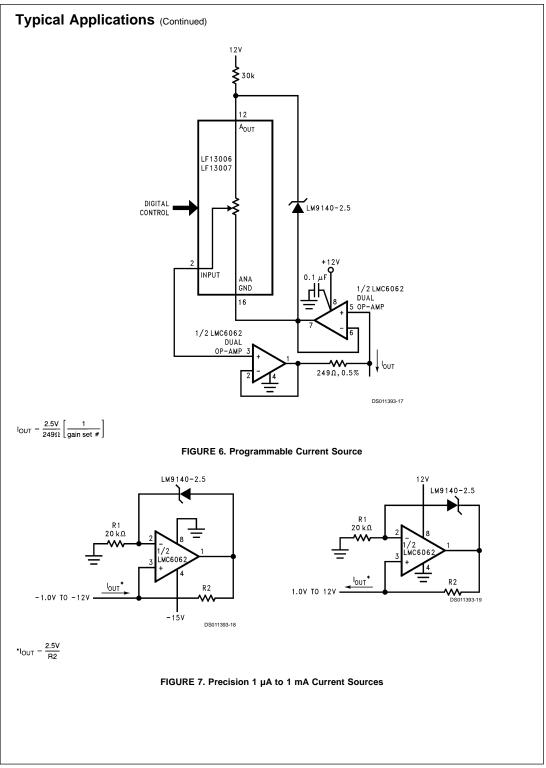
Typical Applications

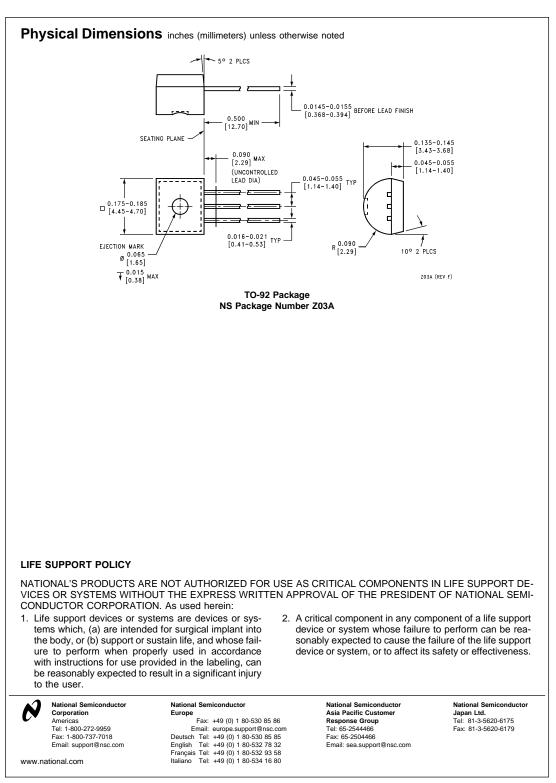
ply voltage and the LM9140. $R_{\rm S}$ determines the current that flows through the load ($I_{\rm L}$) and the LM9140 ($I_{\rm Q}$). Since load current and supply voltage may vary, $R_{\rm S}$ should be small enough to supply at least the minimum acceptable $I_{\rm Q}$ to the LM9140 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and $I_{\rm L}$ is at its minimum, $R_{\rm S}$ should be large enough so that the current flowing through the LM9140 is less than 15 mA.


 R_S is determined by the supply voltage, (V_S) , the load and operating current, (I_L and I_Q), and the LM9140's reverse breakdown voltage, $V_R.$


$$\mathsf{R}_{S} = \frac{\mathsf{V}_{S} - \mathsf{V}_{R}}{\mathsf{I}_{L} + \mathsf{I}_{Q}}$$


FIGURE 1. Shunt Regulator


DS011393-20


IM9140

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.