July 2001

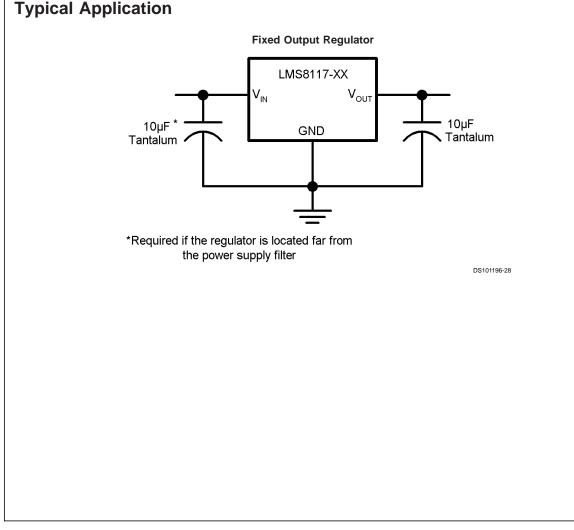
LMS8117A 1A Low-Dropout Linear Regulator

General Description

The LMS8117A is a series of low dropout voltage regulators with a dropout of 1.2V at 1A of load current. It has the same pin-out as National Semiconductor's industry standard LM317.

The LMS8117A is available in an adjustable version, which can set the output voltage from 1.25V to 13.8V with only two external resistors. In addition, it is also available in two fixed voltages, 1.8V and 3.3V.

The LMS8117A offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within $\pm 1\%$.


The LMS8117A series is available in SOT-223 and TO-252 D-PAK packages. A minimum of $10\mu F$ tantalum capacitor is required at the output to improve the transient response and stability.

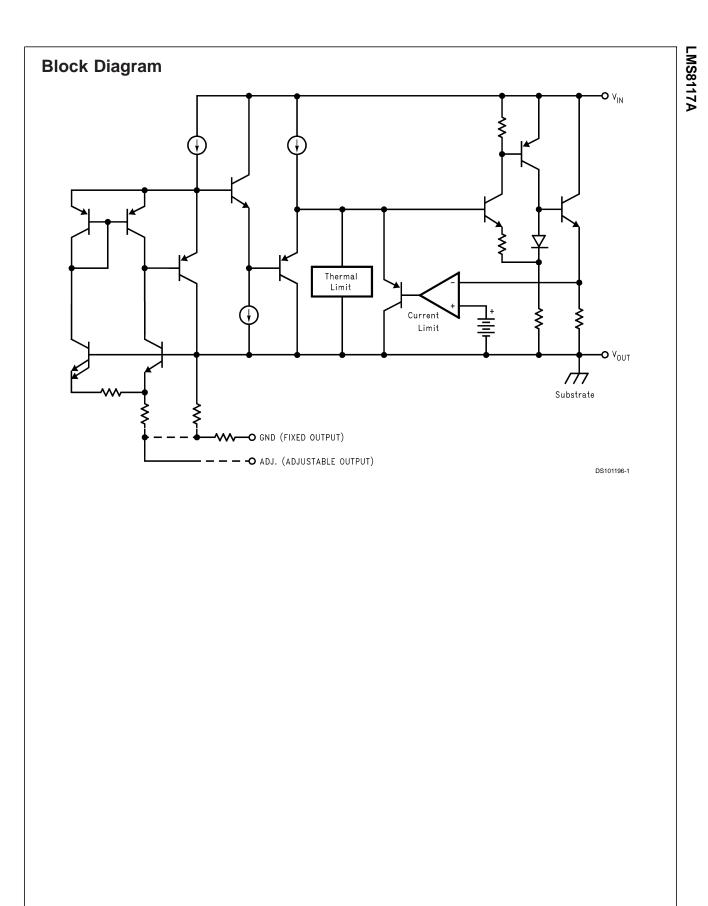
Features

- Available in 1.8V, 3.3V, and Adjustable Versions
- Space Saving SOT-223 and TO-252 Packages
- Current Limiting and Thermal Protection
- Output Current
- Temperature Range
- Line Regulation
- Load Regulation

Applications

- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators
- Battery Charger
- Battery Powered Instrumentation

LMS8117A 1A Low-Dropout Linear Regulator


1A

0°C to 125°C

0.2% (Max)

0.4% (Max)

I-lead IMS8117AMP-ADJ LS0A 1k Tape and Reel MP04A V0T-223 LMS8117AMP-ADJ LS0A 2k Tape and Reel Ims8117AMP-ADJ LS0A 2k Tape and Reel Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117AMP-ADJ Ims8117ADT-ADJ Ims8	Package	Temperature Range (T _J) 0°C to +125°C	Packaging Marking	Transport Media	NSC Drawing
SOT-223 LMS8117AMPX-ADJ LSOA 2k Tape and Reel LMS8117AMPX-1.8 LSOO 1k Tape and Reel LMS8117AMPX-1.8 LSOO 2k Tape and Reel LMS8117AMPX-3.3 LSO1 1k Tape and Reel LMS8117AMPX-3.3 LSO1 2k Tape and Reel LMS8117ADT-ADJ LMS8117ADT-ADJ Rails TD03B LMS8117ADTX-ADJ LMS8117ADT-ADJ 2.5k Tape and Reel LMS8117ADTX-1.8 LMS8117ADT-1.8 Rails LMS8117ADTX-1.8 LMS8117ADT-1.8 2.5k Tape and Reel LMS8117ADTX-3.3 LMS8117ADT-3.3 Rails LMS8117ADTX-3.3 LMS8117ADT-3.3 C.5k Tape and Reel SOT-223 Top View Top View	2 load		1 504	1k Tapo and Pool	MD04A
LINGS 117AMP-1.8 LMS8117AMP-3.8 LMS8117AMP-3.3 LS00 1k Tape and Reel LMS8117AMP-3.3 LS01 1k Tape and Reel LMS8117AMP-3.3 LS01 2k Tape and Reel LMS8117ADT-ADJ LMS8117ADT-ADJ LMS8117ADT-ADJ LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-3.3 LMS8132 LMS8132 LMS8132 LMS8132 LMS8132 LMS8132 LMS8132 LMS8132 LMS8132 LMS8132 LMS813 LMS8132 LMS813 LMS8132 LMS8132 LMS813 LMS813					
LMS8117AMPX-1.8 LS00 2k Tape and Reel LMS8117AMP3.3 LS01 1k Tape and Reel LMS8117AMPX-3.3 LS01 2k Tape and Reel LMS8117ADT-ADJ LMS8117ADT-ADJ Rails TD03B LMS8117ADTX-ADJ LMS8117ADT-ADJ 2.5k Tape and Reel LMS8117ADT-1.8 LMS8117ADT-1.8 Rails LMS8117ADT-3.3 LMS8117ADT-3.3 Rails LMS8117ADT-3.3 LMS8117ADT-3.3 C.5k Tape and Reel SOT-223 Tab is voir universe Top View Voir Universe Top View Voir Universe Stortseas				-	-
LMS8117AMP-3.3 LS01 1k Tape and Reel LMS8117AMPX-3.3 LS01 2k Tape and Reel LMS8117ADT-ADJ LMS8117ADT-ADJ Rails TD03B LMS8117ADT-1.8 LMS8117ADT-1.8 Rails LMS8117ADT-1.8 LMS8117ADT-1.8 Rails LMS8117ADT-3.3 LMS8117ADT-3.3 Rails LMS8117ADT-3.3 LMS8117ADT-3.3 2.5k Tape and Reel SOT-223 To View To View To 252 Top View To View To 252 Top View To View To 252 Top View To 252 Tab is to 196-98 Top View To 252 Top View To 252 Top View To 252 Tab is to 196-98 Top View To 252 Top View To 252 To 252 T				-	-
LMS8117AMPX-3.3 LMS8117ADT-ADJ LMS8117ADT-ADJ LMS8117ADT-ADJ LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-3.3 LMS81					-
I-lead TO-252 LMS8117ADT-ADJ LMS8117ADT-ADJ LMS8117ADT-ADJ LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-1.8 LMS8117ADT-3.3 LMS8107ADT-3.3 LMS8107ADT-3.3 LMS8107ADT-3.3 LMS8107ADT-3.3 LMS8107ADT-3.3 LMS8107ADT-3.3					-
LMS8117ADTX-ADJLMS8117ADT-ADJ2.5k Tape and ReelLMS8117ADT-1.8LMS8117ADT-1.8RailsLMS8117ADTX-1.8LMS8117ADT-1.82.5k Tape and ReelLMS8117ADT-3.3LMS8117ADT-3.3RailsLMS8117ADTX-3.3LMS8117ADT-3.32.5k Tape and ReelConnection DiagramsSOT-223TO-252Tab is vour for ViewTO-252Imput output adj/GND Dititie6-98Top ViewTop ViewSottine6-38	lead TO-252				TD03B
LMS8117ADT-1.8 LMS8117ADT-1.8 Rails LMS8117ADTX-1.8 LMS8117ADT-1.8 2.5k Tape and Reel LMS8117ADT-3.3 LMS8117ADT-3.3 Rails LMS8117ADTX-3.3 LMS8117ADT-3.3 Rails LMS8117ADTX-3.3 LMS8117ADT-3.3 Rails LMS8117ADTX-3.3 LMS8117ADT-3.3 2.5k Tape and Reel Connection Diagrams To-252 Tab is Vout UTPUT OUTPUT ADJ/GND DS101196-99 Top View DS101196-38	1000 10 202				-
LMS8117ADTX-1.8 LMS8117ADT-1.8 2.5k Tape and Reel LMS8117ADT-3.3 LMS8117ADT-3.3 Rails LMS8117ADTX-3.3 LMS8117ADT-3.3 2.5k Tape and Reel Connection Diagrams Top View Top View					-
LMS8117ADT-3.3 LMS8117ADT-3.3 Rails LMS8117ADTX-3.3 LMS8117ADT-3.3 2.5k Tape and Reel Connection Diagrams Top View Top View					-
LMS8117ADTX-3.3 LMS8117ADT-3.3 2.5k Tape and Reel Connection Diagrams TO-252 Image: Sold of the state					-
Connection Diagrams SOT-223 Tab is Vout Top View Top View Top View Top View					-
		iop View		DS101196-38	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Input Voltage (V _{IN} to GND)	
LMS8117A-ADJ, LMS8117A-1.8,	
LMS8117A-3.3	20V
Power Dissipation (Note 2)	Internally Limited
Junction Temperature (T _J) (Note 2)	150°C
Storage Temperature Range	-65°C to 150°C

Soldering Information	
Infrared (20 sec)	235°C
ESD Tolerance (Note 3)	2000V

Operating Ratings (Note 1)

 Input Voltage (V_{IN} to GND)

 LMS8117A-ADJ, LMS8117A-1.8,

 LMS8117A-3.3
 15V

 Junction Temperature Range
 0°C to 125°C

 (T_J)(Note 2)
 0°C

Electrical Characteristics

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V_{REF}	Reference Voltage	LMS8117A-ADJ				
		$I_{OUT} = 10$ mA, V_{IN} - $V_{OUT} = 2V$, $T_J = 25$ °C	1.238	1.250	1.262	V
		$10mA \le I_{OUT} \le 1A$, $1.4V \le V_{IN}$ - $V_{OUT} \le$	1.225	1.250	1.270	V
		10V				
V _{out}	Output Voltage	LMS8117A-1.8				
		$I_{OUT} = 10$ mA, $V_{IN} = 3.8$ V, $T_{J} = 25$ °C	1.782	1.800	1.818	V
		$0 \le I_{OUT} \le 1A, \ 3.2V \le V_{IN} \le 10V$	1.746	1.800	1.854	V
		LMS8117A-3.3				
		I_{OUT} = 10mA, V_{IN} = 5V T_J = 25°C	3.267	3.300	3.333	V
		$0 \le I_{OUT} \le 1A, 4.75V \le V_{IN} \le 10V$	3.235	3.300	3.365	V
ΔV_{OUT}	Line Regulation	LMS8117A-ADJ				
	(Note 6)	I_{OUT} = 10mA, 1.5V \leq V _{IN} -V _{OUT} \leq 13.75V		0.035	0.2	%
		LMS8117A-1.8		1	6	m∖
		I_{OUT} = 0mA, 3.2V $\leq V_{IN} \leq 10V$				
		LMS8117A-3.3				
		$I_{OUT} = 0mA, \ 4.75V \le V_{IN} \le 15V$		1	6	m∖
ΔV _{OUT}	Load Regulation	LMS8117A-ADJ				
	(Note 6)	V_{IN} - V_{OUT} = 3V, 10mA $\leq I_{OUT} \leq 1$ A		0.2	0.4	%
		LMS8117A-1.8				
V _{IN} -V _{OUT}		V_{IN} = 3.2V, $0 \le I_{OUT} \le 1A$		1	10	m∨
		LMS8117A-3.3				
		V_{IN} = 4.75V, $0 \le I_{OUT} \le 1A$		1	10	m∖
	Dropout Voltage	I _{OUT} = 100mA		1.1	1.15	V
	(Note 7)	I _{OUT} = 500mA		1.15	1.2	V
		I _{OUT} = 1A		1.2	1.25	V
I _{LIMIT}	Current Limit	$V_{IN}-V_{OUT} = 5V, T_J = 25^{\circ}C$	1.0	1.4	1.9	А
	Minimum Load	LMS8117A-ADJ				
	Current (Note 8)	V _{IN} = 15V		1.7	5	mA
	Quiescent Current	LMS8117A-1.8		5	10	mA
		$V_{IN} \leq 15V$		-	_	
		LMS8117A-3.3				
		$V_{IN} \le 15V$		5	10	mA
	Thermal Regulation	$T_A = 25^{\circ}C$, 30ms Pulse		0.01	0.1	%/V
	Ripple Regulation	$f_{\text{RIPPLE}} = 120$ Hz, $V_{\text{IN}} - V_{\text{OUT}} = 3$ V	60	75		dB
		$V_{RIPPLE} = 1V_{PP}$				
	Adjust Pin Current			60	120	μA
	Adjust Pin Current	$10\text{mA} \le I_{OUT} \le 1\text{A},$				
	Change	$1.4V \le V_{IN} V_{OUT} \le 10V$		0.2	5	μA

Electrical Characteristics (Continued)

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
	Temperature Stability			0.5		%
	Long Term Stability	T _A = 125°C, 1000Hrs		0.3		%
	RMS Output Noise	(% of V_{OUT}), 10Hz \leq f \leq 10kHz		0.003		%
	Thermal Resistance Junction-to-Case	3-Lead SOT-223 3-Lead TO-252		15.0 10		°C/W °C/W
	Thermal Resistance Junction-to-Ambient (No heat sink; No air flow)	3-Lead SOT-223 3-Lead TO-252 (Note 9)		136 92		°C/W °C/W

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

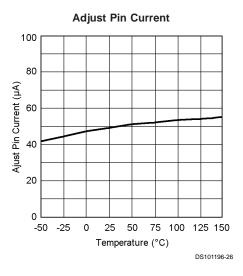
Note 3: For testing purposes, ESD was applied using human body model, $1.5k\Omega$ in series with 100pF.

Note 4: Typical Values represent the most likely parametric norm.

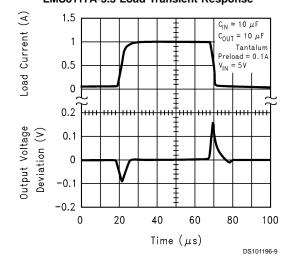
Note 5: All limits are guaranteed by testing or statistical analysis.

Note 6: Load and line regulation are measured at constant junction room temperature.

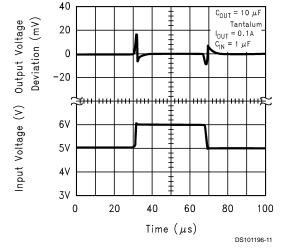
Note 7: The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 100mV from the nominal value obtained at $V_{IN} = V_{OUT} + 1.5V$.

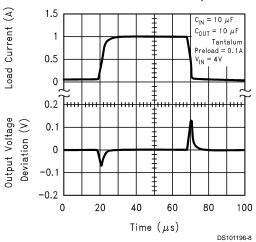

Note 8: The minimum output current required to maintain regulation.

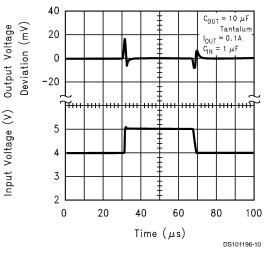
Note 9: Minimum pad size of 0.038in²



Typical Performance Characteristics Dropout Voltage (VIN-V OUT) Short-Circuit Current 1.4 2.0 = 125°C Тј 1.2 T_{JI}= 0°C 1.6 Short Circuit Current (A) 1 Dropout Voltage (V) T_J = 25°C T_J = 125°C 1.2 T¹ = 0°C 0.8 `= 25°C Тj 0.6 0.8 0.4 0.4 0.2 0 0 ل 0 5 200 400 10 0 600 800 1000 15 Input-Output Differential (V) Output Current (mA) DS101196-23 DS101196-22 LMS8117A-ADJ Ripple Rejection vs. Current Load Regulation 0 $F_{RIPPLE} = 120Hz, V_{RIPPLE} = 3V_{PP}$ 80 ^{∆I}LOAD ⁼ 1A -0.02 Output Voltage Deviation (%) 60 Ripple Rejection (dB) -0.04 $F_{RIPPLE} = 20 kHz, V_{RIPPLE} = 0.5 V_{PP}$ 40 -0.06 20 -0.08 0 -0.10 400 800 0 600 1000 200 0 25 50 75 100 125 Load Current (mA) Temperature (°C) DS101196-6 DS101196-24 LMS8117A-ADJ Ripple Rejection **Temperature Stability** 100 2 1.5 80 Output Voltage Change (%) Ripple Rejection (dB) 1 0.5 60 $V_{IN} - V_{OUT} \ge V_{DROPOUT}$ $V_{\text{RIPPLE}} \leq 3 V_{\text{PP}}$ $C_{\text{OUT}} = 22 \ \mu\text{F} \text{ Tan}$ $C_{\text{ADJ}} = 22 \ \mu\text{F}$ 0 40 -0.5 -1 20 = 500 mAI_{OUT} -1.5 0 -2 100 1k 10k -50 100k 0 50 100 150 Temperature (°C) Frequency (Hz) DS101196-7 DS101196-25


Typical Performance Characteristics (Continued)


LMS8117A-3.3 Load Transient Response


LMS8117A-3.3 Line Transient Response

LMS8117A-1.8 Load Transient Response

LMS8117A-1.8 Line Transient Response

APPLICATION NOTE

1.0 External Capacitors/Stability

1.1 Input Bypass Capacitor

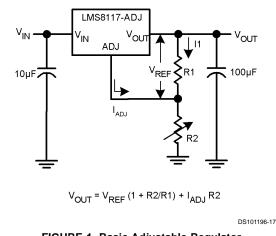
An input capacitor is recommended. A 10µF tantalum on the input is a suitable input bypassing for almost all applications.

1.2 Adjust Terminal Bypass Capacitor

The adjust terminal can be bypassed to ground with a bypass capacitor (CADJ) to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. At any ripple frequency, the impedance of the C_{ADJ} should be less than R1 to prevent the ripple from being amplified:

 $1/(2\pi^* f_{RIPPLE}^* C_{ADJ}) < R1$

The R1 is the resistor between the output and the adjust pin. Its value is normally in the range of $100-200\Omega$. For example, with R1 = 124Ω and f_{RIPPLE} = 120Hz, the C_{ADJ} should be > 11µF.

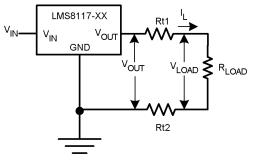

1.3 Output Capacitor

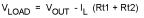
The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the LMS8117A is 10µF, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should be greater than 0.5Ω and less than 5Ω . In the case of the adjustable regulator, when the C_{ADJ} is used, a larger output capacitance (22µf tantalum) is required.

2.0 Output Voltage

The LMS8117A adjustable version develops a 1.25V reference voltage, $V_{\text{REF}},$ between the output and the adjust terminal. As shown in Figure 1, this voltage is applied across resistor R1 to generate a constant current I1. The current ${\sf I}_{{\sf ADJ}}$ from the adjust terminal could introduce error to the output. But since it is very small (60µA) compared with the I1 and very constant with line and load changes, the error can be ignored. The constant current I1 then flows through the output set resistor R2 and sets the output voltage to the desired level.

For fixed voltage devices, R1 and R2 are integrated inside the devices.

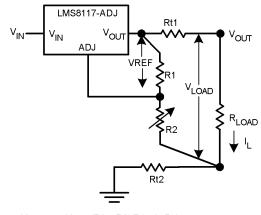



FIGURE 1. Basic Adjustable Regulator

3.0 Load Regulation

The LMS8117A regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed.

Figure 2, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the V_{LOAD} is less than the V_{OUT} by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the $\mathrm{R}_{\mathrm{LOAD}}$ would be degraded from the data sheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.



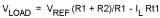
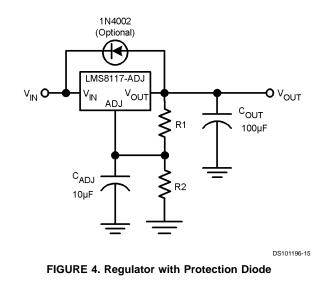

DS101196-18

FIGURE 2. Typical Application using Fixed Output Regulator

When the adjustable regulator is used (Figure 3), the best performance is obtained with the positive side of the resistor R1 tied directly to the output terminal of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 5V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05\Omega \times I_L$. If R1 (=125 Ω) is connected near the load, the effective line resistance will be 0.05Ω (1+R2/R1) or in this case, it is 4 times worse. In addition, the ground side of the resistor R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

APPLICATION NOTE (Continued)

DS101196-19


FIGURE 3. Best Load Regulation using Adjustable Output Regulator

4.0 Protection Diodes

Under normal operation, the LMS8117A regulators do not need any protection diode. With the adjustable device, the internal resistance between the adjust and output terminals limits the current. No diode is needed to divert the current around the regulator even with capacitor on the adjust terminal. The adjust pin can take a transient signal of $\pm 25V$ with respect to the output voltage without damaging the device.

When a output capacitor is connected to a regulator and the input is shorted to ground, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and rate of decrease of V_{IN}. In the LMS8117A regulators, the internal diode between the output and input pins can withstand microsecond surge currents of 10A to 20A. With an extremely large output capacitor (\geq 1000 µF), and with input instantaneously shorted to ground, the regulator could be damaged.

In this case, an external diode is recommended between the output and input pins to protect the regulator, as shown in *Figure 4*.

5.0 Heatsink Requirements

When an integrated circuit operates with an appreciable current, its junction temperature is elevated. It is important to quantify its thermal limits in order to achieve acceptable performance and reliability. This limit is determined by summing the individual parts consisting of a series of temperature rises from the semiconductor junction to the operating environment. A one-dimensional steady-state model of conduction heat transfer is demonstrated in *Figure 5*. The heat generated at the device junction flows through the die to the die attach pad, through the lead frame to the surrounding case material, to the printed circuit board, and eventually to the ambient environment. Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink.

R ^{θJC} (Component Vari- ables)	R ^{eCA} (Application Vari- ables)				
Leadframe Size &	Mounting Pad Size,				
Material	Material, & Location				
No. of Conduction Pins	Placement of Mounting Pad				
Die Size	PCB Size & Material				
Die Attach Material	Traces Length & Width				
Molding Compound Size and Material	Adjacent Heat Sources				
	Volume of Air				
	Ambient Temperatue				
	Shape of Mounting Pad				
Lead Frame $R^{H}JA = R^{H}JC + R^{H}CA$ Die $R^{H}JA = R^{H}JC + R^{H}CA$ Holded Package $R^{H}JC$ $T_{A} = 25^{\circ}C$					

FIGURE 5. Cross-sectional view of Integrated Circuit Mounted on a printed circuit board. Note that the case temperature is measured at the point where the leads contact with the mounting pad surface

The LMS8117A regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LMS8117A must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, P_D , must be calculated:

$$I_{IN} = I_{L} + I_{G}$$
$$P_{D} = (V_{IN} - V_{OUT})I_{L} + V_{IN}I_{G}$$

nting Pad DS101196-37

APPLICATION NOTE (Continued)

Figure 6 shows the voltages and currents which are present in the circuit.

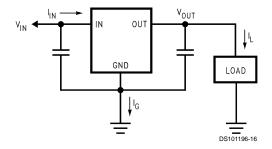


FIGURE 6. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, ${\rm T_R}({\rm max})$:

 $T_{R}(max)=T_{J}(max)-T_{A}(max)$

where $T_J(max)$ is the maximum allowable junction temperature (125°C), and $T_A(max)$ is the maximum ambient temperature which will be encountered in the application.

Using the calculated values for $T_{\text{R}}(\text{max})$ and P_{D} , the maximum allowable value for the junction-to-ambient thermal resistance (θ_{JA}) can be calculated:

 $\theta_{JA} = T_R(max)/P_D$

If the maximum allowable value for θ_{JA} is found to be $\geq\!136\,^\circ\text{C/W}$ for SOT-223 package or $\geq\!92\,^\circ\text{C/W}$ for TO-252 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} falls below these limits, a heatsink is required.

As a design aid, *Table 1* shows the value of the θ_{JA} of SOT-223 and TO-252 for different heatsink area. The copper patterns that we used to measure these θ_{JA} s are shown at the end of the Application Notes Section. *Figure 7* and *Figure 8* reflects the same test results as what are in the *Table 1*.

Figure 9 and *Figure 10* shows the maximum allowable power dissipation vs. ambient temperature for the SOT-223 and TO-252 device. *Figure 11* and *Figure 12* shows the maximum allowable power dissipation vs. copper area (in^2) for the SOT-223 and TO-252 devices. Please see AN1028 for power enhancement techniques to be used with SOT-223 and TO-252 packages.

Layout	Copper Area		Thermal Resistance		
	Top Side (in ²)*	Bottom Side (in ²)	(θ _{JA} , °C/W) SOT-223	(θ _{JA} ,°C/W) TO-252	
1	0.0123	0	136	103	
2	0.066	0	123	87	
3	0.3	0	84	60	
4	0.53	0	75	54	
5	0.76	0	69	52	
6	1	0	66	47	
7	0	0.2	115	84	
8	0	0.4	98	70	
9	0	0.6	89	63	
10	0	0.8	82	57	
11	0	1	79	57	
12	0.066	0.066	125	89	
13	0.175	0.175	93	72	
14	0.284	0.284	83	61	
15	0.392	0.392	75	55	
16	0.5	0.5	70	53	

TABLE 1. θ_{JA} Different Heatsink Area

*Tab of device attached to topside copper

APPLICATION NOTE (Continued)

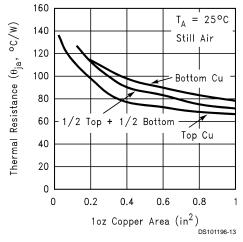


FIGURE 7. θ_{JA} vs. 1oz Copper Area for SOT-223

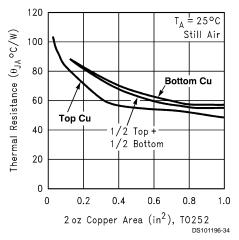
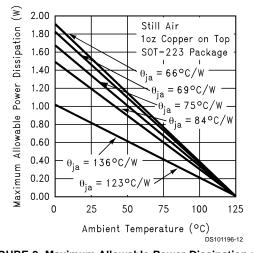
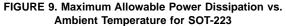




FIGURE 8. θ_{JA} vs. 2oz Copper Area for TO-252

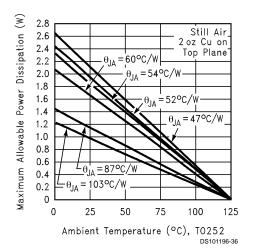


FIGURE 10. Maximum Allowable Power Dissipation vs. Ambient Temperature for TO-252

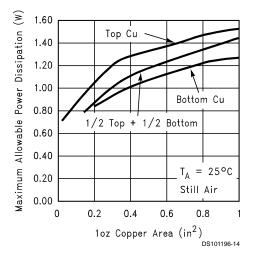
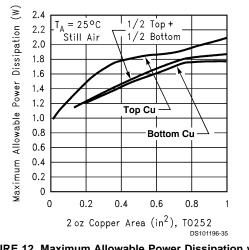
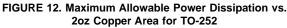
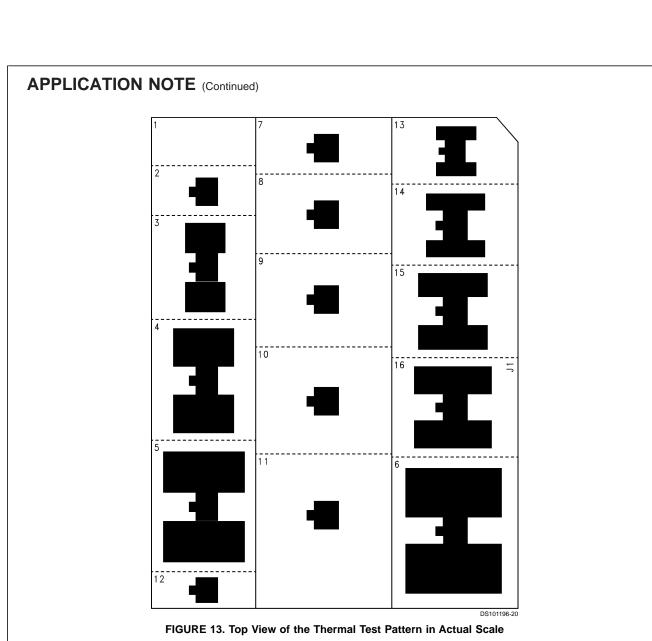
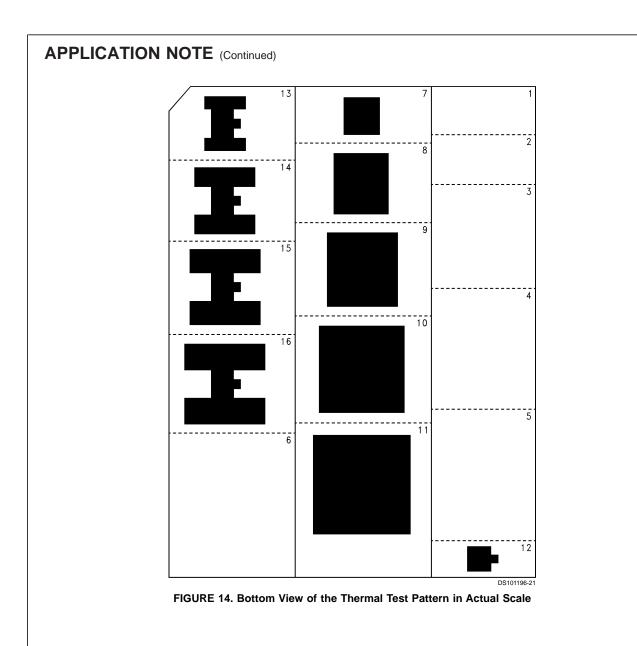
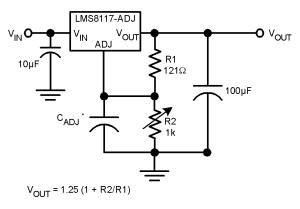
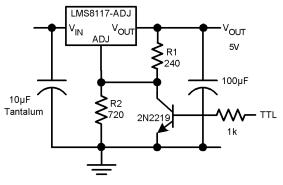






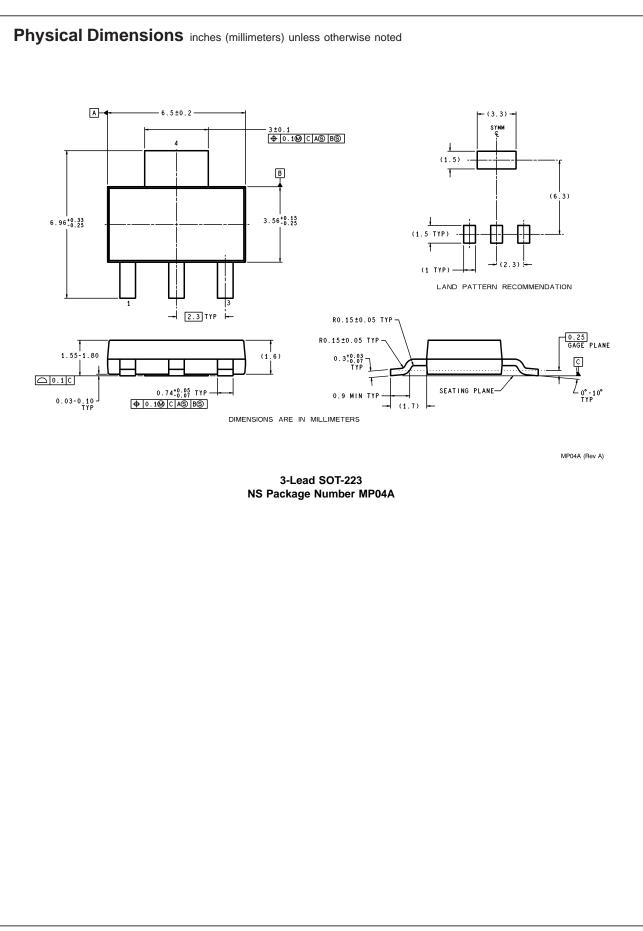
FIGURE 11. Maximum Allowable Power Dissipation vs. 1oz Copper Area for SOT-223

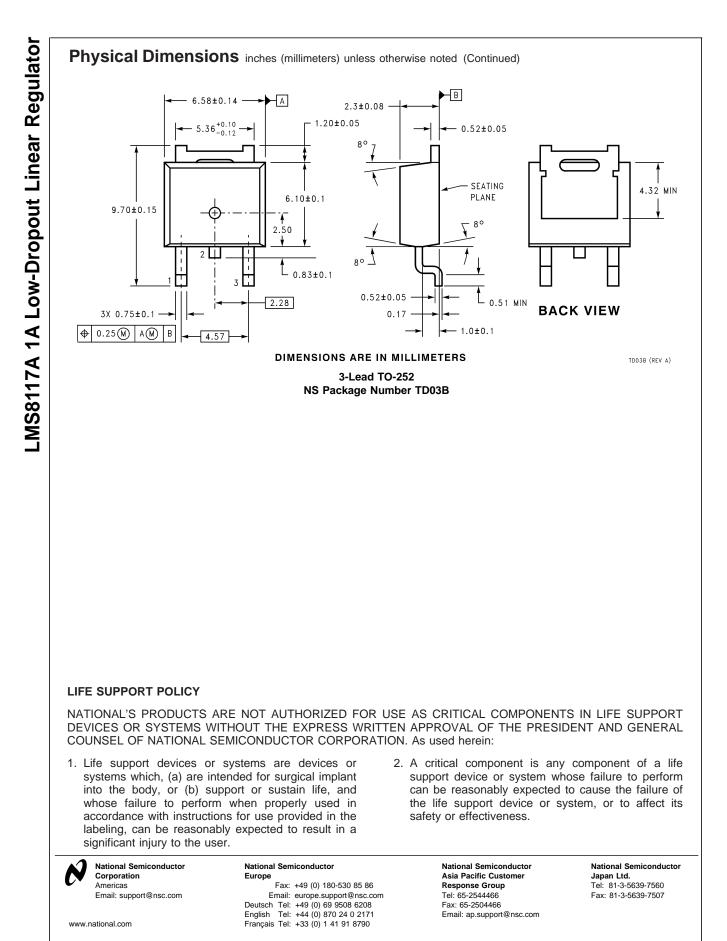



Typical Application Circuits

* $\mathrm{C}_{\mathrm{ADJ}}$ is optionall, however it will improve ripple rejection

DS101196-29


1.25V to 10V Adjustable Regulator with Improved Ripple Rejection



* Min. Output $\approx 1.25V$

DS101196-27

5V Logic Regulator with Electronic Shutdown*

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.