National Semiconductor

ADC0811 8-Bit Serial I/O A/D Converter With 11-Channel Multiplexer

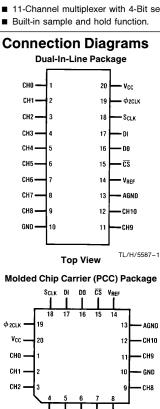
General Description

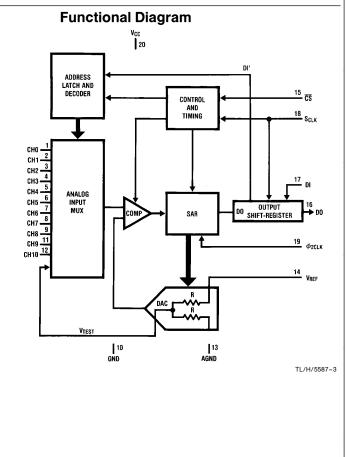
The ADC0811 is an 8-Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 11 input channels or an internal half scale test voltage.

An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle.

Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

Features


- Separate asynchronous converter clock and serial data I/O clock.
- 11-Channel multiplexer with 4-Bit serial address logic.
- Built-in sample and hold function.



- No zero or full-scale adjust required.
- Internally addressable test voltage.
- OV to 5V input range with single 5V power supply.
- TTL/MOS input/output compatible.
- 0.3" standard width 20-pin dip or 20-pin molded chip carrier

Key Specifications

- Resolution
- Total unadjusted error \pm 1/2LSB and \pm 1LSB
- Single supply
- Low Power
- Conversion Time

ADC0811 8-Bit Serial I/O A/D Converter With 11-Channel Multiplexer

8-Bits

 $5V_{\text{DC}}$

15 mW

32 µS

December 1994

© 1995 National Semiconductor Corporation TL/H/5587

CH3 CH4 CH5 CH6 CH7

Top View Order Number ADC0811J,N,V See NS Packages J20A, N20A, V20A **Use Ordering Information**

TL/H/5587-2

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V_{CC}) 6.5V Voltage

$-0.3V$ to V_{CC} $\pm 0.3V$
$\pm5\text{mA}$
\pm 20mA
-65°C to +150°C
875 mW

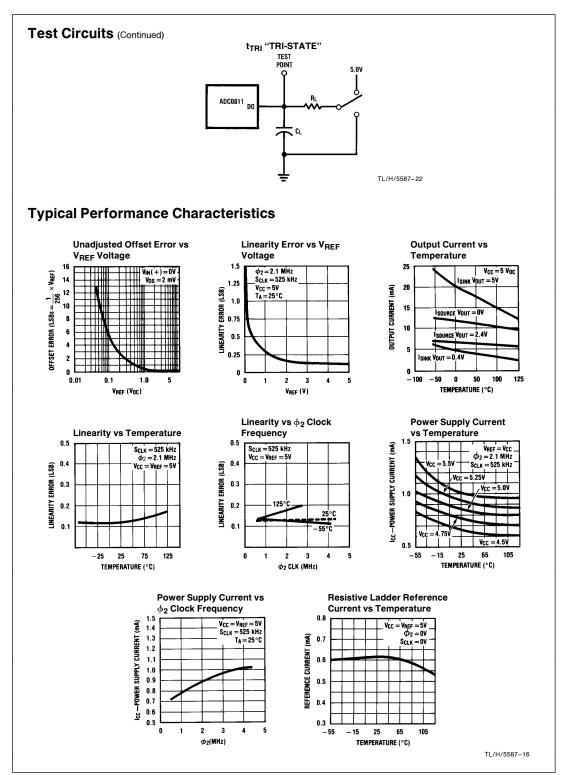
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	260°C
Dual-In-Line Package (ceramic)	300°C
Molded Chip Carrier Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
ESD Susceptibility (Note 11)	2000V

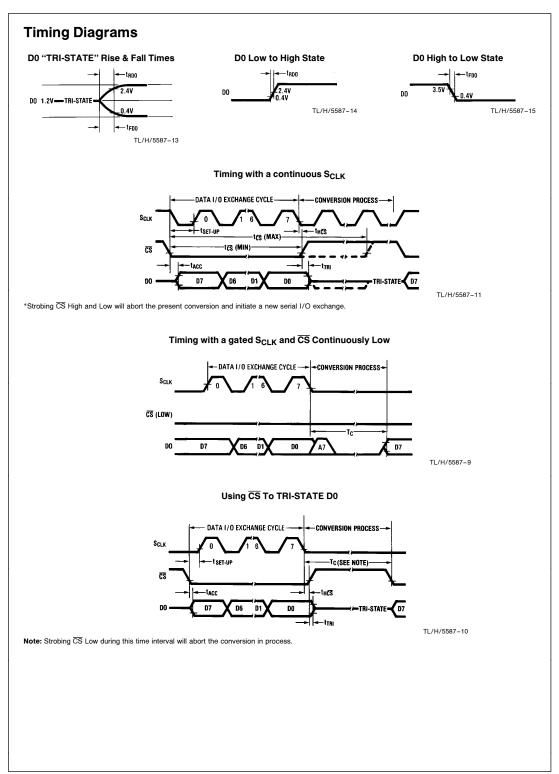
Operating Ratings (Notes 1 & 2)

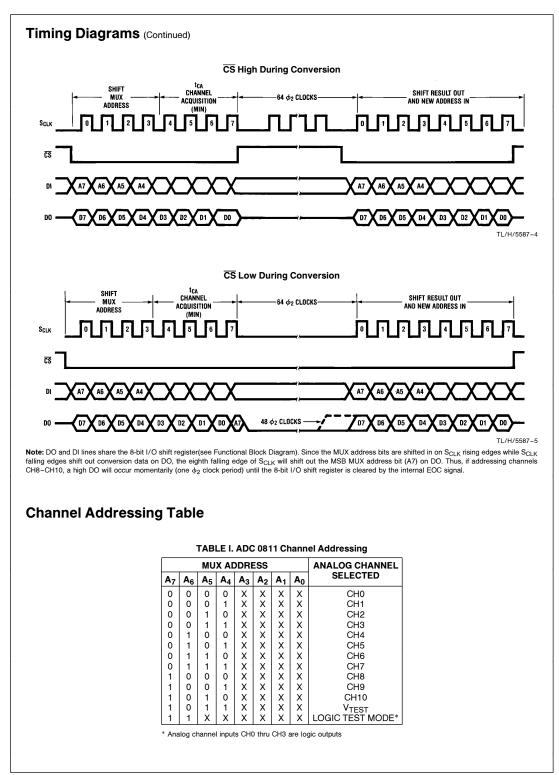
Supply Voltage (V _{CC})	4.5 V _{DC} to 6.0 V _{DC}
Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$
ADC0811BCN, ADC0811CCN	$0^{\circ}C \le T_{A} \le 70^{\circ}C$
ADC0811BCV	$-40^{\circ}C \le T_{A} \le 85^{\circ}C$
ADC0811CCJ, ADC0811CCV	$-40^{\circ}C \leq T_{A} \leq 85^{\circ}C$

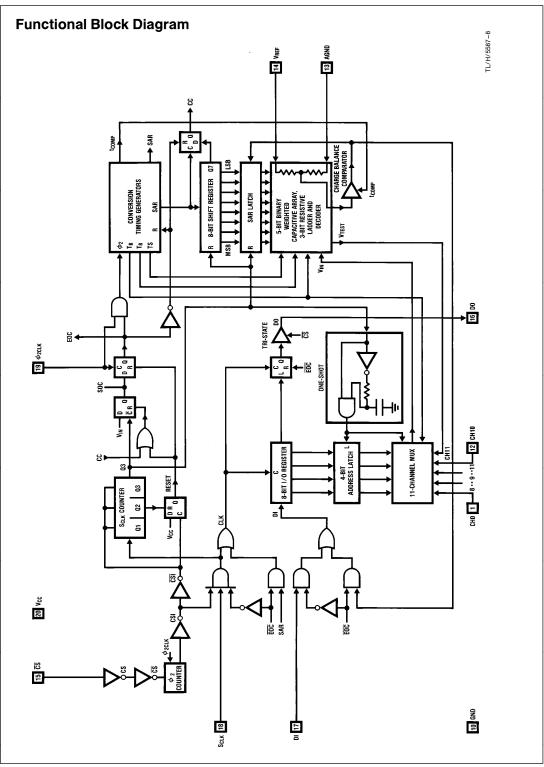
Electrical Characteristics

The following specifications apply for V_{CC} = 4.75V to 5.25V, V_{REF} = +4.6V to (V_{CC} + 0.1V), $\phi_{2 \text{ CLK}}$ = 2.097 MHz unless otherwise specified. Boldface limits apply from T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C.


			ADC0811CCJ				C0811BCV C0811CCV	
Parameter	meter Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
CONVERTER AND MULTIPLEX	ER CHARACTERI	STICS						
Maximum Total Unadjusted Error ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV ADC0811CCJ	V _{REF} =5.00 V _{DC} (Note 4)		± 1			± 1⁄2 ±1	± ½ ± 1	LSB LSB LSB
Minimum Reference Input Resistance		8		5	8		5	kΩ
Maximum Reference Input Resistance		8	11		8	11	11	kΩ
Maximum Analog Input Range	(Note 5)		V _{CC} +0.05			$V_{CC} \! + \! 0.05$	V _{CC} +0.05	V
Minimum Analog Input Range			GND-0.05			GND-0.05	GND-0.05	V
On Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel = 5V Off Channel = 0V		1000			400	1000	nA
ADC0811CJ, BJ			1000					nA
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel=0V Off Channel=5V		- 1000			-400	- 1000	nA
ADC0811BJ, CJ	(Note 9)		- 1000					nA
Off Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel = 5V Off Channel = 0V		- 1000			-400	1000	nA
ADC0811CJ, BJ			- 1000					nA
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel = $0V$ Off Channel = $5V$		1000			400	1000	nA
ADC0811BJ, CJ	(Note 9)		1000					nA
Minimum V _{TEST} Internal Test Voltage	V _{REF} =V _{CC} , CH 11 Selected		125			125	125	(Note 10 Counts
Maximum V _{TEST} Internal Test Voltage	V _{REF} = V _{CC} , CH 11 Selected		130			130	130	(Note 10) Counts


Electrical Cha	racteristics
----------------	--------------


The following specifications apply for $V_{CC} = 4.75V$ to 5.25V, $V_{REF} = +4.6V$ to ($V_{CC} + 0.1V$), $\phi_{2 \ CLK} = 2.097$ MHz unless otherwise specified. Boldface limits apply from T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. (Continued)


		ADC0811CCJ						0811BC\ 0811CC\	:v			
Parameter				Typical (Note 6)	Li	sted nit te 7)	Li	sign mit ote 8)	Typical (Note 6)	Tested Limit (Note 7)	Desigr Limit (Note 8	
DIGITAL AND DC CHARACTERI	STICS											
V _{IN(1)} , Logical "1" Input Voltage (Min)	V _{CC} =5.2	5V			2	.0				2.0	2.0	V
V _{IN(0)} , Logical "0" Input Voltage (Max)	V _{CC} =4.7	5V			0	.8				0.8	0.8	V
I _{IN(1)} , Logical ''1'' Input Current (Max)	V _{IN} =5.0\	/		0.005	2	.5			0.005	2.5	2.5	μΑ
I _{IN(0)} , Logical ''0'' Input Current (Max)	V _{IN} =0V			-0.005	-:	2.5			-0.005	2.5	-2.5	μΑ
V _{OUT(1)} , Logical "1" Output Voltage (Min)	V _{CC} =4.75V I _{OUT} =-360 μA I _{OUT} =-10 μA					.4				2.4 4.5	2.4 4.5	V V
V _{OUT(0)} , Logical ''0'' Output Voltage (Max)	V _{CC} =5.2	:5V 6 mA			0	.4				0.4	0.4	V
I _{OUT} , TRI-STATE Output Current (Max)	$V_{OUT} = 0$ $V_{OUT} = 5$			-0.01 0.01		υ Ω			-0.01 0.01	-3 3	-3 3	μA μA
I _{SOURCE} , Output Source Current (Min)	V _{OUT} =0	V		-12	-	ð.5			-14	-6.5	-6.5	mA
ISINK, Output Sink Current (Min)	V _{OUT} =V	СС		18	8	.0			16	8.0	8.0	mA
I _{CC} , Supply Current (Max)	$\overline{\text{CS}} = 1, V$	REF Ope	en	1	2	.5			1	2.5	2.5	mA
I _{REF} (Max)	V _{REF} =5	v		0.7		1			0.7	1	1	mA
Parameter				Condition	S	Турі	ical	Teste Limi		Design Limit		Units
Parameter				Condition	S	Typi (Not			t	•		Units
Parameter $\phi_{2 CLK}, \phi_{2} Clock Frequency$		MIN		Condition	S		e 6)	Limi	t	Limit		Units MHz
		MIN MAX		Condition	S	(Not	e 6) 70	Limi	t	Limit (Note 8)		
$\phi_{2 CLK}, \phi_{2}$ Clock Frequency S_{CLK} , Serial Data Clock				Condition	IS	(Not 0.7	e 6) 70	Limi (Note	t	Limit (Note 8) 1.0		
$\phi_{2 CLK}, \phi_{2} Clock Frequency$		MAX		Condition	S	(Not 0.7	e 6) 70 0	Limi (Note	t 7)	Limit (Note 8) 1.0 2.1		MHz
$\phi_{2 CLK}, \phi_{2}$ Clock Frequency S_{CLK} , Serial Data Clock		MAX MIN	Not	Condition	MUX	(Not 0.7 3.	e 6) 70 0	Limi (Note 2.0	t 7)	Limit (Note 8) 1.0 2.1 5.0		MHz
$\phi_{2 CLK}, \phi_{2} Clock Frequency$ S _{CLK} , Serial Data Clock Frequency		MAX MIN MAX	Not Ado Ana	t Including	MUX	(Not 0.7 3. 70	e 6) 70 0 00 8	Limi (Note 2.0	t 7)	Limit (Note 8) 1.0 2.1 5.0 525		MHz KHz
$\phi_{2 CLK}, \phi_{2} Clock Frequency$ S _{CLK} , Serial Data Clock Frequency	<u>.</u>	MAX MIN MAX MIN	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8	Limi (Note 2.0	t 7)	Limit (Note 8) 1.0 2.1 5.0 525 48		MHz KHz
φ _{2 CLK} , φ ₂ Clock Frequency S _{CLK} , Serial Data Clock Frequency T _C , Conversion Process Time		MAX MIN MAX MIN MAX	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8	Limi (Note 2.0	t 7)	Limit (Note 8) 1.0 2.1 5.0 525 48 64		MHz KHz φ ₂ cycle
φ _{2 CLK} , φ ₂ Clock Frequency S _{CLK} , Serial Data Clock Frequency T _C , Conversion Process Time t _{ACC} , Access Time Delay From C	lid CS Falling	MAX MIN MAX MIN MAX MIN	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8	Limi (Note 2.0	t 7) 	Limit (Note 8) 1.0 2.1 5.0 525 48 64 64 1 3	1 5_CLK	MHz KHz φ ₂ cycle
φ _{2 CLK} , φ ₂ Clock Frequency S _{CLK} , Serial Data Clock Frequency T _C , Conversion Process Time t _{ACC} , Access Time Delay From C Falling Edge to DO Data Va t _{SET-UP} , Minimum Set-up Time of	lid CS Falling ge	MAX MIN MAX MIN MAX MIN	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8	Limi (Note 2.0	t 7) 	Limit (Note 8) 1.0 2.1 5.0 525 48 64 1	1 S _{CLK}	MHz KHz φ ₂ cycle
φ _{2 CLK} , φ ₂ Clock Frequency S _{CLK} , Serial Data Clock Frequency T _C , Conversion Process Time t _{ACC} , Access Time Delay From C Falling Edge to DO Data Va t _{SET-UP} , Minimum Set-up Time of Edge to S _{CLK} Rising Edg t _{HCS} , CS Hold Time After the Fall	lid CS Falling ge	MAX MIN MAX MIN MAX MIN	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8	Limi (Note 2.0	t 7) 	Limit (Note 8) 1.0 2.1 5.0 525 48 64 1 3 ϕ_{2} CLK $+\frac{1}{2}$	SCLK	MHz KHz φ ₂ cycle φ ₂ cycle sec
¢ _{2 CLK} , φ ₂ Clock Frequency S _{CLK} , Serial Data Clock Frequency T _C , Conversion Process Time t _{ACC} , Access Time Delay From C Falling Edge to DO Data Va tsET-UP, Minimum Set-up Time of Edge to S _{CLK} Rising Edg t _{HCS} , CS Hold Time After the Fall Edge of S _{CLK}	lid CS Falling ge	MAX MIN MAX MIN MAX MIN MAX	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8	Limi (Note 2.0	t 7) 	Limit (Note 8) 1.0 2.1 5.0 525 48 64 1 3 $\phi_{2}CLK + \frac{1}{2}$	S _{CLK}	MHz KHz φ ₂ cycle φ ₂ cycle sec ns
¢ _{2 CLK} , φ ₂ Clock Frequency S _{CLK} , Serial Data Clock Frequency T _C , Conversion Process Time t _{ACC} , Access Time Delay From C Falling Edge to DO Data Va tsET-UP, Minimum Set-up Time of Edge to S _{CLK} Rising Edg t _{HCS} , CS Hold Time After the Fall Edge of S _{CLK}	lid CS Falling ge ing	MAX MIN MAX MIN MAX MIN MAX	Not Ado Ana	t Including dressing ar alog Input	MUX	(Not 0.7 3. 70 48	e 6) 70 0 00 8 4	Limi (Note 2.0	t 7) 	Limit (Note 8) 1.0 2.1 5.0 525 48 64 1 3 $\phi_{2}CLK + \frac{2}{2}$ 0 et-up + 8/S	S _{CLK}	MHz KHz φ ₂ cycle φ ₂ cycle sec ns sec

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
AC CHARACTERISTICS (Continued)	1		Γ		I	
t _{SDI} , Minimum DI Set-up Time to S _{CLK} Rising Edge			200		400	ns
t _{DDO} , Maximum Delay From S _{CLK} Falling Edge to DO Data Valid	$R_L = 30k, C_L = 100 \text{ pF}$		180	400	400	ns
t _{TRI} , Maximum DO Hold Time, (CS Rising edge to DO TRI-STATE)	$R_L = 3k, C_L = 100 \text{ pF}$		90	150	150	ns
t _{CA} , Analog Sampling Time	$\frac{\text{After Addres}}{\text{CS}} = \text{Low}$	s Is Latched			4/S _{CLK} +1 μ s	sec
t _{RDO} , Maximum DO	$R_L = 30 k\Omega$,	"TRI-STATE" to "HIGH" State	75	150	150	
Rise Time	C _L =100 pf	"LOW" to "HIGH" State	150	300	300	ns
t _{FDO} , Maximum DO	$R_L = 30 k\Omega$,	"TRI-STATE" to "LOW" State	75	150	150	
Fall Time	$C_{I} = 100 \text{ pf}$	"HIGH" to "LOW" State	150	300	300	ns
C _{IN} , Maximum Input	Analog Input	s, ANO-AN10 and V _{REF}	11		55	_
Capacitance	All Others		5		15	pF
Note 5: Two on-chip diodes are tied to each	analog input, whic					
	analog input, which sting at low V_{CC} is analog inputs nea a by more than 50 of 4.950 V_{DC} over ' nost likely paramet sted under worst of n tested. These lin d after the channe	h will forward-conduct for analog input vo svels (4.5V), as high level analog inputs (r full-scale. The spec allows 50 mV forws 50 mV forws mV, the output code will be correct. To act temperature variations, initial tolerance ar tric norm. case condition. nitis are not used to calculate outgoing qu I selection.	5V) can caus ird bias of eit nieve an abso id loading.	e this input di her diode. Th	ode to conduct, especi is means that as long a	e drop ally at as the
Note 5: Two on-chip diodes are tied to each greater than V_{CS} supply. Be careful during te elevated temperatures, and cause errors for analog V_{IN} does not exceed the supply voltage therefore require a minimum supply voltage on Note 6: Typicals are at 25°C and represent m Note 7: Guaranteed and 100% production te Note 8: Guaranteed, but not 100% production Note 9: Channel leakage current is measured Note 10: 1 count = $V_{REF}/256$.	analog input, which sting at low $V_{\rm CC}$ h analog inputs near by more than 50 f 4.950 $V_{\rm DC}$ over ' nost likely paramel sted under worst of n tested. These lin I after the channe ged through a 1.5	h will forward-conduct for analog input vo svels (4.5V), as high level analog inputs (r full-scale. The spec allows 50 mV forws 50 mV forws mV, the output code will be correct. To act temperature variations, initial tolerance ar tric norm. case condition. nitis are not used to calculate outgoing qu I selection.	5V) can caus ird bias of eit nieve an abso id loading. ality levels.	e this input di her diode. Th	iode to conduct, especi is means that as long a 5 V _{DC} input voltage ran	e drop ally at as the

Functional Description

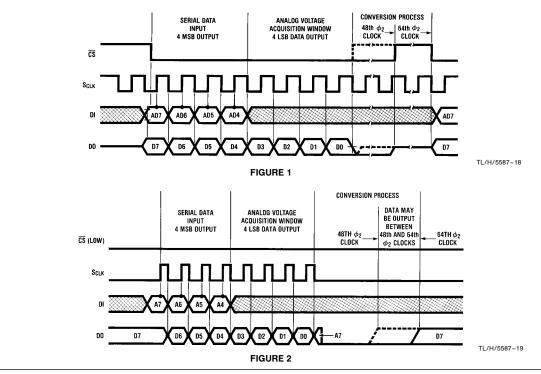
1.0 DIGITAL INTERFACE

The ADC0811 uses five input/output pins to implement the serial interface. Taking chip select (\overline{CS}) low enables the I/O data lines (DO and DI) and the serial clock input (S_{CLK}). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of S_{CLK} and the conversion data is shifted out on the falling edge. It takes eight S_{CLK} cycles to complete the serial I/O. A second clock (ϕ_2) controls the SAR during the conversion process and must be continuously enabled.

1.1 CONTINUOUS SCLK

With a continuous S_{CLK} input \overline{CS} must be used to synchronize the serial data exchange (see *Figure 1*). The ADC0811 recognizes a valid \overline{CS} one to three φ_2 clock periods after the actual falling edge of \overline{CS} . This is implemented to ensure noise immunity of the \overline{CS} signal. Any spikes on \overline{CS} less than one φ_2 clock period will be ignored. \overline{CS} must remain low during the complete I/O exchange which takes eight S_{CLK} cycles. Although \overline{CS} is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of \overline{CS} immediately enables DO to output the MSB (D7) of the previous conversion.

The first S_{CLK} rising edge will be acknowledged after a setup time (t_{set-up}) has elapsed from the falling edge of \overline{CS} . This and the following seven S_{CLK} rising edges will shift in the channel address for the analog multiplexer. Since there are 12 channels only four address bits are utilized. The first four S_{CLK} cycles clock in the mux address, during the next four S_{CLK} cycles the analog input is selected and sampled. During


this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of \overline{CS} only data bits D6–D0 remain to be received. The following seven falling edges of S_{CLK} shift out this data on DO.

The 8th S_{CLK} falling edge initiates the beginning of the A/D's actual conversion process which takes between 48 to 64 ϕ_2 cycles (T_C). During this time \overline{CS} can go high to TRI-STATE DO and disable the S_{CLK} input or it can remain low. If \overline{CS} is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time (T_C) synchronizing the data exchange is impossible. Therefore \overline{CS} should go high before the 48th ϕ_2 clock has elasped and return low after the 64th ϕ_2 to synchronize serial communication.

A conversion or I/O operation can be aborted at any time by strobing \overline{CS} . If \overline{CS} is high or low less than one ϕ_2 clock it will be ignored by the A/D. If the \overline{CS} is strobed high or low between 1 to 3 ϕ_2 clocks the A/D may or may not respond. Therefore \overline{CS} must be strobed high or low greater than 3 ϕ_2 clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

1.2 DISCONTINUOUS SCLK

Another way to accomplish synchronous serial communication is to tie \overline{CS} low continuously and disable S_{CLK} after its 8th falling edge (see *Figure 2*). S_{CLK} must remain low for

Functional Description (Continued)

at least 64 φ_2 clocks to insure that the A/D has completed its conversion. If S_{CLK} is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With \overline{CS} low during the conversion time (64 ϕ_2 max) DO will go low after the eighth falling edge of S_{CLK} and remain low until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once S_{CLK} is enabled as discussed previously.

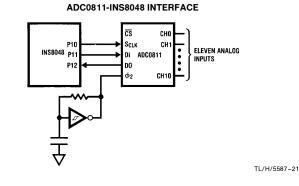
If \overline{CS} goes high during the conversion sequence DO is tristated, and the result is not affected so long as \overline{CS} remains high until the end of the conversion.

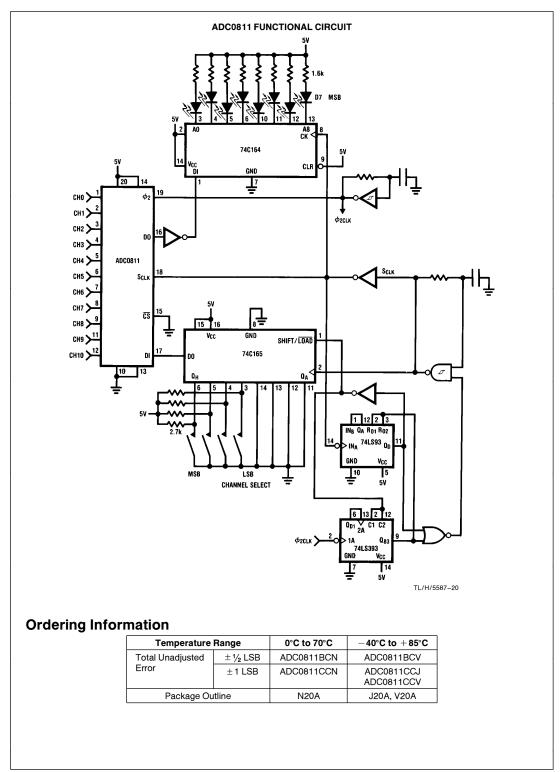
1.2 MULTIPLEXER ADDRESSING

The four bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twelve (11XX) as this puts the A/D in a digital testing mode. In this mode the analog inputs CH0 thru CH3 become digital outputs, for our use in production testing.

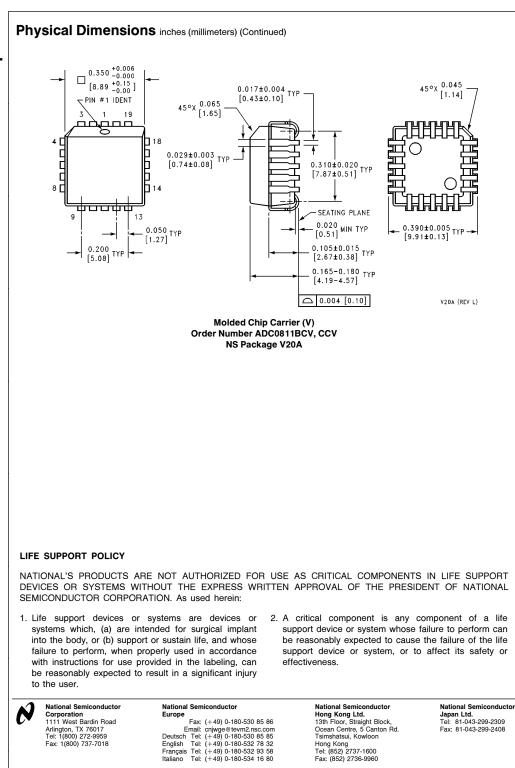
2.0 ANALOG INPUT

2.1 THE INPUT SAMPLE AND HOLD


The ADC0811's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for 1 μ sec after the


eighth S_{CLK} falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of $4t_{S_{CLK}}+1$ μ sec is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.

In the most simple case, the ladder's acquisition time is determined by the R_{on} (3K) of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about 2 μsec for a full scale reading. Therefore the analog input must be stable for at least 2 μsec before and 1 μsec after the eighth S_{CLK} falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.


Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0811's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of 64 ϕ_2 clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started.

Typical Applications

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.