March 1992

DS1692/DS3692 TRI-STATE Differential Line Drivers

National Semiconductor

DS1692/DS3692 **TRI-STATE®** Differential Line Drivers

General Description

Vcc

GND

INPUT A

DISABLE 1

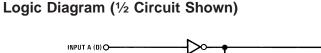
DISABLE 2

INPUT D

VEE

*Contact Product Marketing for availability.

MODE SELECT


The DS1692/DS3692 are low power Schottky TTL line drivers electrically similar to the DS1691A/DS3691 but tested to meet the requirements of MIL-STD-188-114A (see Application Note AN-216). MIL-STD-188-114A type 1 driver specifications can be met by adding an external three resistor voltage divider to the output of the DS3692/1692. The DS3692/ 1692 feature 4 buffered outputs with high source and sink current capability with internal short circuit protection.

With the mode select pin low, the DS1692/DS3692 are dual differential line drivers with TRI-STATE outputs. They feature ±10V output common-mode range in TRI-STATE and 0V output unbalance when operated with ±5V supply.

capacitors is not allowed. Features

Multipoint applications in differential mode with waveshaping

- Short circuit protection for both source and sink outputs
- 100Ω transmission line drive capability
- \blacksquare Low I_{CC} and I_{EE} power consumption: Differential
- mode: $I_{CC} = 9 \text{ mA/driver typ}, I_{EE} = 5 \text{ mA/driver typ}$ Low current PNP inputs compatible with TTL, MOS and CMOS
- Adaptable as MIL-STD-188-114A type 1 driver

O OUTPUT A (D) TRI-STATE® C DISABLE О ОПТРИТ В (С) мор SELECT DS005784-1 **Connection Diagram** Inputs Outputs A (D) Disable1 (2) Mode A (D) B (C) 0 0 0 0 1 RISE TIME CONTROL A 0 0 1 TRI-STATE TRI-STATE Ο Ο ΤΡΟΤΑ 0 1 0 1 0 ОИТРИТ В 0 TRI-STATE TRI-STATE 1 1 RISE TIME CONTROL B 12 RISE TIME CONTROL C 11 OUTPUT C 10 OUTPUT D BISE TIME CONTROL D DS005784-2

TRI-STATE® is a registered trademark of National Semiconductor Corporation. © 1999 National Semiconductor Corporation DS005784

Top View Order Number DS1692J, DS3692J, DS3692M or DS3692N See NS Package Number J16A, M16A* or N16A

Absolute Maximum Ratings (Note 2)

. .

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	
V _{cc}	7V
V _{EE}	-7V
Maximum Power Dissipation (Note 1) at	25°C
Cavity Package	1509 mW
Molded Package	1476 mW
Input Voltage	15V
Output Voltage (Power OFF)	±15V
Storage Temperature	–65°C to +150°C
Lead Temperature (Soldering, 4 sec.)	260°C

Operating Conditions					
Min	Max	Units			
4.5	5.5	V			
-4.5	-5.5	V			
4.75	5.25	V			
-4.75	-5.25	V			
-55	+125	°C			
0	+70	°C			
	Min 4.5 -4.5 4.75 -4.75 -55 0	Min Max 4.5 5.5 -4.5 -5.5 4.75 5.25 -4.75 -5.25 -55 +125			

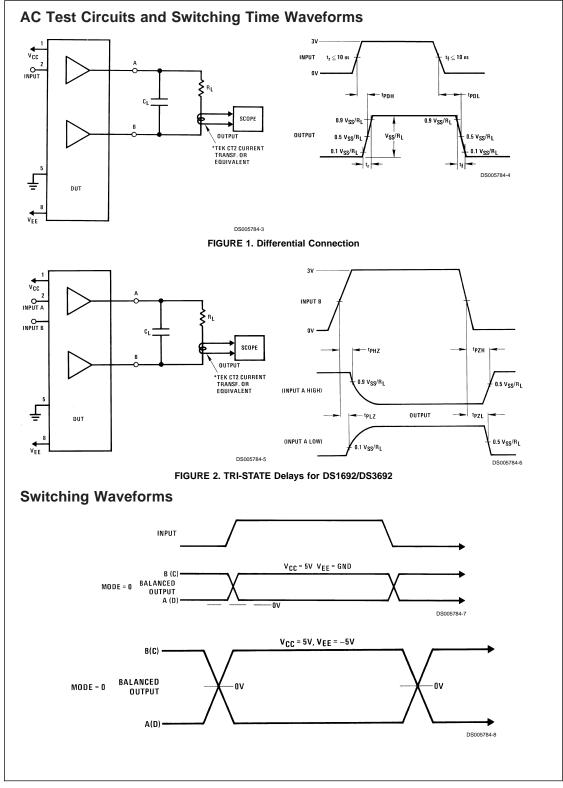
Note 1: Derate cavity package 10.1 mW/°C; derate molded package 11.9 mW/°C above 25°C.

Electrical Characteristics

DS1692/DS3692 (Notes 3, 4, 5)

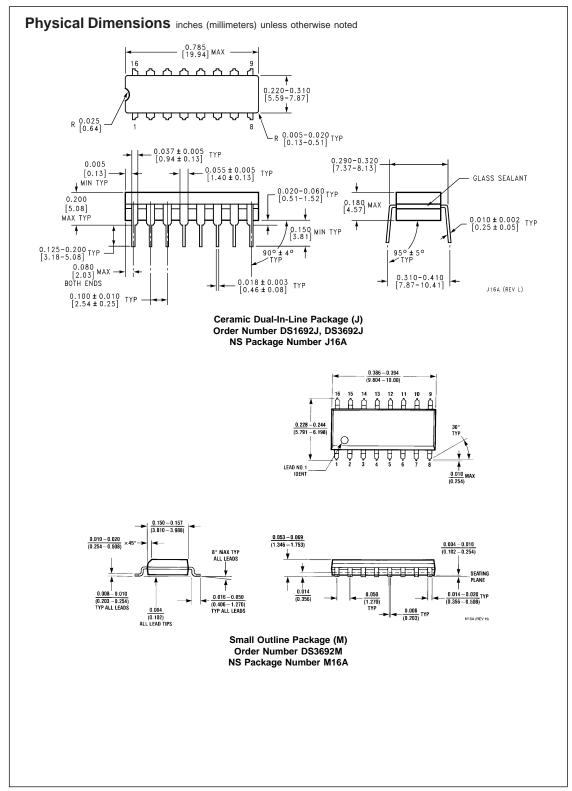
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
DS1692, V _{CC} =	5V ±10%, DS3692, V_{CC} = 5V ±5%	, V _{EE} CONNECTION	ON TO GROUND	, MODE S	ELECT ≤ 0.8	BV	
/ ₀	Differential Output Voltage	R _L = ∞	$V_{IN} = 2V$	2.5	3.6		V
/ ₀	V _{A,B}		$V_{IN} = 0.8V$	-2.5	-3.6		V
/ _T	Differential Output Voltage	R _L = 100Ω	$V_{IN} = 2V$	2	2.6		V
/ _T	V _{A,B}	$V_{CC} \ge 4.75V$	$V_{IN} = 0.8V$	-2	-2.6		V
$V_{OS}, \overline{V_{OS}}$	Common-Mode Offset	R _L = 100Ω	•		2.5	3	V
	Voltage						
$V_{T} - \overline{V_{T}} $	$\overline{V_{T}}$ Difference in Differential $R_{L} = 100\Omega$				0.05	0.4	V
	Output Voltage						
$V_{os} - \overline{V_{os}} $	Difference in Common-	$R_1 = 100\Omega$			0.05	0.4	V
	Mode Offset Voltage						
ss	$ V_T - \overline{V_T} $	$R_{\rm L} = 100\Omega, V_{\rm CC} \ge 4.75V$		4.0	4.8		V
ЭХ	TRI-STATE Output Current	V _O ≤ −10V			-0.002	-0.15	m/
		$V_{O} \ge 15V$			0.002	0.15	m/
SA	Output Short Circuit Current	V _{IN} = 0.4V	$V_{OA} = 6V$		80	150	m/
			$V_{OB} = 0V$		-80	-150	m/
I _{SB}	Output Short Circuit Current	V _{IN} = 2.4V	$V_{OA} = 0V$		-80	-150	m/
			$V_{OB} = 6V$		80	150	m/
сс	Supply Current				18	30	m/
	5V ±10%, V _{EE} = -5V ±10%, DS36	92, V _{cc} = 5V ±5%	%, V _{EE} = -5 ±5%	, MODE S	ELECT ≤ 0.8	3V	
/ ₀	Differential Output Voltage	R ₁ = ∞	$V_{IN} = 2.4V$	7	8.5		V
$\overline{I_0}$	V _{A.B}	_	$V_{IN} = 0.4V$	-7	-8.5		V
/ _T	Differential Output Voltage	$R_1 = 200\Omega$	V _{IN} = 2.4V	6	7.3		V
$\overline{I_{T}}$	V _{A.B}	_	$V_{IN} = 0.4V$	-6	-7.3		V
$V_T - \overline{V_T} $	Output Unbalance	$ V_{CC} = V_{EE} ,$	$R_1 = 200\Omega$		0.02	0.4	V
DX	TRI-STATE Output Current		$V_{0} = 10V$		0.002	0.15	m/
			$V_{0} = -10V$		-0.002	-0.15	m/
s ⁺	Output Short Circuit Current	$V_{O} = 0V$	V _{IN} = 2.4V		-80	-150	m/
5		_	$V_{IN} = 0.4V$	1	80	150	m/
SLEW	Slew Control Current				±140		μA
CC	Positive Supply Current	V _{IN} = 0.4V, R _I	= ∞		18	30	m/
EE	Negative Supply Current	$V_{IN} = 0.4V, R_I = \infty$			-10	-22	m/

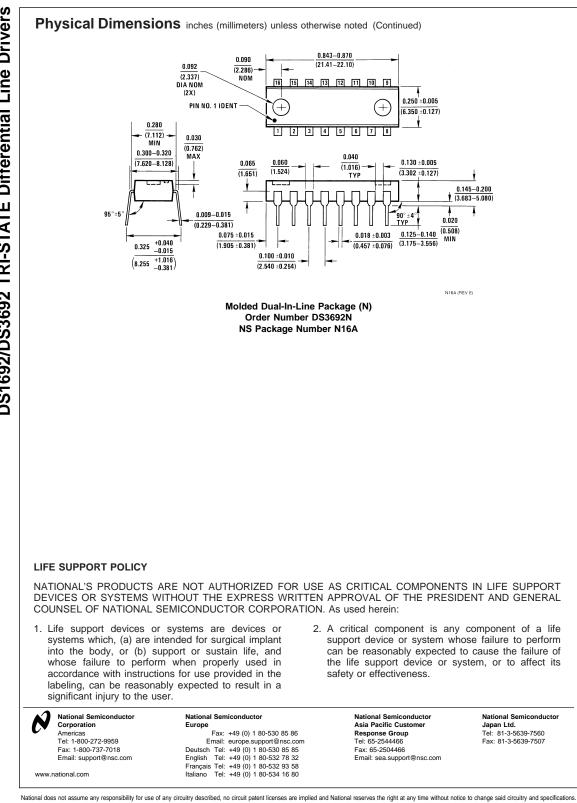
• EE = •••	(Notes 3, 4)						
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	High Level Input Voltage			2			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	urrent V _{IN} = 2.4V			1	40	μA
		$V_{IN} \le 15V$			10	100	μA
IIL	Low Level Input Current	V _{IN} = 0.4V	$V_{IN} = 0.4V$		-30	-200	μA
VI	Input Clamp Voltage	$I_{IN} = -12 \text{ mA}$				-1.5	V
I _{XA}	Output Leakage Current	$V_{CC} = V_{EE} = 0V$	V _O = 15V		0.01	0.15	mA
I _{XB}	Power OFF		$V_0 = -15V$		-0.01	-0.15	mA


Switching Characteristics T_{A} = 25 $^{\circ}\mathrm{C}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$V_{\rm CC}$ = 5V,	MODE SELECT = 0.8V					
t _r	Differential Output Rise Time	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _f	Differential Output Fall Time	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _{PDH}	Output Propagation Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _{PDL}	Output Propagation Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _{PZL}	TRI-STATE Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		180	250	ns
t _{PZH}	TRI-STATE Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		180	250	ns
t _{PLZ}	TRI-STATE Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		80	150	ns
t _{PHZ}	TRI-STATE Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		80	150	ns
$V_{CC} = 5V,$	$V_{EE} = -5V$, MODE SELECT = 0.8V					
t _r	Differential Output Rise Time	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		190	300	ns
t _f	Differential Output Fall Time	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		190	300	ns
t _{PDL}	Output Propagation Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		190	300	ns
t _{PDH}	Output Propagation Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		190	300	ns
t _{PZL}	TRI-STATE Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		180	250	ns
t _{PZH}	TRI-STATE Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		180	250	ns
t _{PLZ}	TRI-STATE Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		80	150	ns
t _{PHZ}	TRI-STATE Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		80	150	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.


Note 3: Unless otherwise specified, min/max limits apply across the –55°C to +125°C temperature range for the DS1692 and across the 0°C to +70°C range for the DS3692. All typicals are given for V_{CC} = 5V and T_A = 25°C. V_{CC} and V_{EE} as listed in operating conditions.


Note 4: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 5: Only one output at a time should be shorted.

www.national.com

4

