NTE5621 thru NTE5627 TRIAC – 10 Amp ### **Description:** The NTE5621 through NTE5627 TRIACs are designed primarily for full—wave AC control applications, such as light dimmers, motor controls, heating controls, and power supplies; or wherever full—wave silicon gate controlled solid—state devices are needed. TRIAC type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering. #### Features: - All Diffused and Passivated Junctions for Greater Parameter Uniformity and Stability - Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability. - Gate Triggering Guaranteed in Two Modes #### **Absolute Maximum Ratings:** | Repetitive Peak Off–State Voltage ($T_J = +100^{\circ}$ C, Note 2), V_{DRM} | | |--|------------------------| | NTE5621 | | | NTE5622 | 50V | | NTE5623 | | | NTE5627 | 500V | | On–State Current RMS ($T_C = +75^{\circ}C$), $I_{T(RMS)}$ | 10A | | Peak Surge Current (One Full Cycle, 60Hz, $T_J = -40^{\circ}$ to +100°C), I_{TSM} | 100A | | Circuit Fusing Considerations ($T_J = -40^{\circ}$ to $+100^{\circ}$ C, $t = 1.0$ to 8.3 ms), I^2 t | 40A ² s | | Peak Gate Power, P _{GM} | 10W | | Average Gate Power, P _{G(AV)} | 0.5W | | Peak Gate Current, I _{GM} | | | Operating Junction Temperature Range, T _J | \dots -40° to +100°C | | Storage Temperature Range, T _{stg} | 40° to +150°C | | Mounting Torque (6–32 Screw, Note 3) | 12in. lb. | | Thermal Resistance, Junction–to–Case, R _{thJC} | 2°C/W | | Thermal Resistance, Case–to–Ambient, R _{thJA} | 50°C/W | | | | - Note 1. NTE5622 and NTE5627 are discontinued devices and no longer available. - Note 2. Ratings apply for open gate conditions. Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage. - Note 3. Torque rating applies with use of torque washer. Mounting torque in excess of 8 in. lbs. does not appreciably lower case—to—sink thermal resistance. Anode lead and heatsink contact pad are common. - Note 4. For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +230°C. # **Electrical Characteristics:** $(T_C = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Min | Тур | Max | Unit | |--|------------------|-----|-----|-----|------| | Peak Blocking Current (Either Direction) (Rated V _{DRM} , T _J = 100°C, Gate Open) | I _{DRM} | _ | _ | 2 | mA | | On-State Voltage (Either Direction)
(I _{TM} = 14A Peak) | V _{TM} | _ | 1.3 | 1.8 | V | | Gate Trigger Current (Continuous DC) (Main Terminal Voltage = 12V, $R_L = 100\Omega$) MT_2 (+), G (+); MT_2 (-), G (-) | I _{GT} | _ | _ | 50 | mA | | Gate Trigger Voltage (Continuous DC) (Main Terminal Voltage = 12V, R _L = 100Ω) MT ₂ (+), G (+); MT ₂ (-), G (-) | V _{GT} | _ | 0.9 | 2.0 | V | | Gate Trigger Voltage (Continuous DC – All Modes) (Main Terminal Voltage = Rated V_{DRM} , $R_L = 100\Omega$, $T_J = +100^{\circ}C$) | V_{GD} | 0.2 | _ | _ | V | | Holding Current (Either Direction)
(Main Terminal Voltage = 12Vdc, Gate Open, I _T = 100mA) | I _H | _ | _ | 50 | mA | | Turn–On Time $(I_{TM} = 14A, I_{GT} = 100mA)$ | t _{on} | | 1.5 | | μs | | Blocking Voltage Application Rate at Commutation (At V_{DRM} , $T_J = +75^{\circ}C$, Gate Open) | dv/dt | | 5 | _ | V/μs |