
HERMETIC SURFACE MOUNT FIXED VOLTAGE POSITIVE REGULATORS APPROVED TO DESC DRAWINGS

LCC 20 Fixed Voltage, Precision Positive Regulators In Hermetic Surface Mount Package

FEATURES

- Hermetic Surface Mount Package
- Output Voltages: +5V, +12V, +15V
- Output Voltages Set Internally To ±1%
- Built-In Thermal Overload Protection
- Short Circuit Current Limiting
- · Hi-Rel Screening Available

DESCRIPTION

These positive regulators are supplied in a hermetically sealed surface mount package. All protective features are designed into the circuit including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over .5 amps of output current. These units feature internally trimmed output voltages to ±1% of nominal voltage. Standard voltages are +5V, +12V, and +15V. These units are ideally suited for Military applications where a hermetic surface mount package is required.

PART NUMBER DESIGNATOR

 Standard Military Drawing Number
 Omnirel Part Number

 5962-8778201 2X
 OM1805N2M

 5962-8777601 2X
 OM1812N2M

 5962-8855301 2X
 OM1815N2M

3.5

4 11 R0 3.5 - 33

OM1805N2M - OM1815N2M

ABSOLUTE MAXIMUM RATINGS @ 25°C

Input Voltage	+35 V
Operating Junction Temper	erature Range 55°C to + 150°C
Storage Temperature Ran	ge 65°C to + 150°C
Typical Power/Thermal Ch	narateristics:
Rated Power @ 25° C	$T_C \dots 2 W$
	T _A 1040 mW
Thermal Resistance	$\theta_{\text{JC}}\dots$
	θ_{JA}

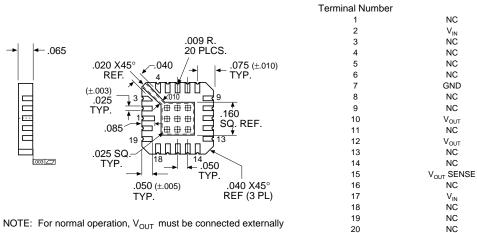
$\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{5 Volt} \quad \text{V}_{\text{IN}} = 10\text{V}, \text{I}_{\text{0}} = 100\text{mA}, -55^{\circ}\text{C} \quad \text{T}_{\text{A}} \quad 125^{\circ}\text{C} \text{ (unless otherwise specified)}$

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		4.92	5.08	V
		$V_{IN} = 7.5V \text{ to } 20V$	•	4.85	5.15	V
		$I_O = 5$ mA to 500 mA, $P \le 2$ W				
Line Regulation	V _{RLINE}	V _{IN} = 7.5V to 20V			5	mV
(Note 1)			•		12	mV
(Note 4)		V _{IN} = 8.0V to 12V			4	mV
			•		10	mV
Load Regulation	V _{RLOAD}	I _O = 5mA to 500 mA			25	mV
(Note 1)			•		50	mV
Standby Current Drain	I _{SCD}				6	mA
			•		6.5	mA
Standby Current Drain	ΔI_{SCD}	$V_{IN} = 7.5V \text{ to } 20V$	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	ΔI_{SCD}	$I_O = 5mA$ to $500mA$	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$T_A = 25^{\circ}C$, $\Delta V_{OUT} = 100$ mV, $I_O = 500$ mA			2.5	V
Peak Output Current	I _{O (pk)}	T _A = 25°C		0.5	1.7	Α
Short Circuit Current	I _{DS}	V _{IN} = 35V			0.7	А
(Note 2)			•		2.0	Α
Ripple Rejection	ΔV_{IN}	$f = 120 \text{ Hz}, \Delta V_{IN} = 10 \text{V}$		68		dB
	ΔV_{OUT}	(Note 3)	•	60		dB
Output Noise Voltage	No	$T_A = 25^{\circ}C$, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV_{OUT}	$T_A = 25^{\circ}C$, $t = 1000$ hrs.			75	mV
(Note 3)	Δt					

2 =

Notes:

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to $V_{\rm IN}$ = 35V.
- 3. If not tested, shall be guaranteed to the specified limits.
 - The denotes the specifications which apply over the full operating temperature range.
- 4. Minimum load current for full line regulation = 5.0 mA.



ELECTRICAL CHARACTERISTICS 12 Volt $V_{IN} = 19V$, $I_o = 100$ mA, -55°C T_A 125°C (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		11.88	12.12	V
		V _{IN} = 14.5V to 27V	•	11.64	12.36	V
		$I_O = 5mA$ to 500 mA, $P \le 2W$				
Line Regulation	V _{RLINE}	V _{IN} = 14.5V to 27V			18	mV
(Note 1)			•		50	mV
(Note 4)		$V_{IN} = 16V \text{ to } 22V$			9	mV
			•		30	mV
Load Regulation	V _{RLOAD}	$I_O = 5mA$ to $500mA$			30	mV
(Note 1)			•		60	mV
tandby Current Drain	I _{SCD}				6.0	mA
			•		6.5	mA
Standby Current Drain	Δl _{SCD}	$V_{IN} = 15V \text{ to } 30V$	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	Δl _{SCD}	$I_O = 5mA \text{ to } 500mA$	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$\Delta V_{OUT} = 100$ mV, $I_{O} = 500$ mA	•		2.5	V
Peak Output Current	I _{O (pk)}	T _A = 25°C		0.5	1.7	А
Short Circuit Current	I _{DS}	V _{IN} = 35V			0.7	А
(Note 2)			•		2.0	A
Ripple Rejection	ΔV_{IN}	f =120 Hz, ΔV _{IN} = 10V		61		dB
	ΔV _{OUT}	(Note 3)	•	54		dB
Output Noise Voltage	N _O	$T_A = 25^{\circ}C$, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV _{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			120	mV
(Note 3)	Δt					

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to $V_{IN} = 35V$.
- 3. If not tested, shall be guaranteed to the specified limits.
 - The denotes the specifications which apply over the full operating temperature range.
- 4. Minimum load current for full line regulation = 5.0 mA.

MECHANICAL OUTLINE

to load.

OM1805N2M - OM1815N2M

$\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{15 Volt} \qquad \textit{V}_{\text{IN}} = 23 \text{V}, \, \textit{I}_{\text{o}} = 100 \text{mA}, -55 ^{\circ}\text{C} \quad \textit{T}_{\text{A}} \quad 125 ^{\circ}\text{C} \, \, (\text{unless otherwise specified})$

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		14.8	15.2	V
		V _{IN} = 18.5V to 30V	•	14.6	15.4	V
		$I_O = 5$ mA to 500 mA, $P \le 2$ W				
Line Regulation	V _{RLINE}	V _{IN} = 17.5V to 30V			20	mV
(Note 1)			•		50	mV
(Note 4)		$V_{IN} = 20V \text{ to } 26V$			15	mV
			•		25	mV
Load Regulation	V _{RLOAD}	I _O = 5mA to 500 mA			50	mV
(Note 1)			•		90	mV
Standby Current Drain	I _{SCD}				6.0	mA
			•		6.5	mA
Standby Current Drain	ΔI_{SCD}	V _{IN} = 18.5V to 30V	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	ΔI_{SCD}	I _O = 5mA to 500mA	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$T_A = 25$ °C, $\Delta V_{OUT} = 100$ mV, $I_O = 500$ mA			2.5	V
Peak Output Current	I _{O (pk)}	T _A = 25°C		0.5	1.7	А
Short Circuit Current	I _{DS}	V _{IN} = 35V			0.7	А
(Note 2)			•		2.0	Α
Ripple Rejection	ΔV_{IN}	f =120 Hz, ΔV _{IN} = 10V		54		dB
	ΔV_{OUT}	(Note 3)	•	52		dB
Output Noise Voltage	N _O	T _A = 25°C, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV_{OUT}	T _A = 25°C, t = 1000 hrs.			150	mV
(Note 3)	Δt					

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to V_{IN} = 35V.
- 3. If not tested, shall be guaranteed to the specified limits.
- The denotes the specifications which apply over the full operating temperature range.

 4. Minimum load current for full line regulation = 5.0 mA.

