
JFETs Switching

N-Channel — Depletion

MPF4392 MPF4393

Motorola Preferred Devices

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	30	Vdc	
Drain-Gate Voltage	V _{DG}	30	Vdc	
Gate-Source Voltage	V _{GS}	30	Vdc	
Forward Gate Current	I _{G(f)}	50	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C	
Operating and Storage Channel Temperature Range	T _{channel} , T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•	•
Gate-Source Breakdown Voltage (I _G = 1.0 μAdc, V _{DS} = 0)		V _(BR) GSS	30	_	_	Vdc
Gate Reverse Current (V _{GS} = 15 Vdc, V _{DS} = 0) (V _{GS} = 15 Vdc, V _{DS} = 0, T _A = 100°C)		l _{GSS}	<u> </u>	_ _	1.0 0.2	nAdc μAdc
Drain–Cutoff Current ($V_{DS} = 15 \text{ Vdc}$, $V_{GS} = 12 \text{ Vdc}$) ($V_{DS} = 15 \text{ Vdc}$, $V_{GS} = 12 \text{ Vdc}$, $V_{A} = 100^{\circ}\text{C}$)		I _{D(off)}	_ _	_	1.0 0.1	nAdc μAdc
Gate Source Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	MPF4392 MPF4393	VGS	-2.0 -0.5	_	-5.0 -3.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current ⁽¹⁾ (V _{DS} = 15 Vdc, V _{GS} = 0)	MPF4392 MPF4393	IDSS	25 5.0	_	75 30	mAdc
Drain–Source On–Voltage ($I_D = 6.0 \text{ mAdc}, V_{GS} = 0$) ($I_D = 3.0 \text{ mAdc}, V_{GS} = 0$)	MPF4392 MPF4393	V _{DS(on)}	_ _	_	0.4 0.4	Vdc
Static Drain–Source On Resistance (I _D = 1.0 mAdc, V _{GS} = 0)	MPF4392 MPF4393	rDS(on)	<u>-</u>		60 100	Ω
SMALL-SIGNAL CHARACTERISTICS		-		-	-	-
Forward Transfer Admittance (V _{DS} = 15 Vdc, I _D = 25 mAdc, f = 1.0 kHz) (V _{DS} = 15 Vdc, I _D = 5.0 mAdc, f = 1.0 kHz)	MPF4392 MPF4393	Уfs	<u>-</u> -	17 12	_ _	mmhos

^{1.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 3.0\%$.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 1

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Тур	Max	Unit	
SMALL-SIGNAL CHARACTERISTICS (continued)						
Drain–Source "ON" Resistance (VGS = 0, I _D = 0, f = 1.0 kHz)	MPF4392 MPF4393	^r ds(on)	_ _	_ _	60 100	Ω
Input Capacitance ($V_{GS} = 15 \text{ Vdc}$, $V_{DS} = 0$, $f = 1.0 \text{ MHz}$)		C _{iss}	_	6.0	10	pF
Reverse Transfer Capacitance $(V_{GS} = 12 \text{ Vdc}, V_{DS} = 0, f = 1.0 \text{ MHz})$ $(V_{DS} = 15 \text{ Vdc}, I_{D} = 10 \text{ mAdc}, f = 1.0 \text{ MHz})$		C _{rss}		2.5 3.2	3.5 —	pF
SWITCHING CHARACTERISTICS						
Rise Time (See Figure 2) (I _{D(on)} = 6.0 mAdc) (I _{D(on)} = 3.0 mAdc)	MPF4392 MPF4393	t _r	_ _	2.0 2.5	5.0 5.0	ns
Fall Time (See Figure 4) (VGS(off) = 7.0 Vdc) (VGS(off) = 5.0 Vdc)	MPF4392 MPF4393	tf	_ _	15 29	20 35	ns
Turn-On Time (See Figures 1 and 2) (I _{D(on)} = 6.0 mAdc) (I _{D(on)} = 3.0 mAdc)	MPF4392 MPF4393	^t on	_ _	4.0 6.5	15 15	ns
Turn-Off Time (See Figures 3 and 4) (VGS(off) = 7.0 Vdc) (VGS(off) = 5.0 Vdc)	MPF4392 MPF4393	^t off		20 37	35 55	ns

TYPICAL SWITCHING CHARACTERISTICS

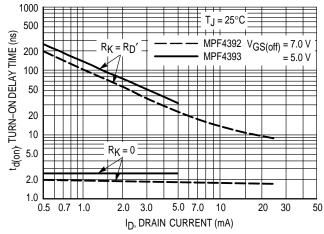


Figure 1. Turn-On Delay Time

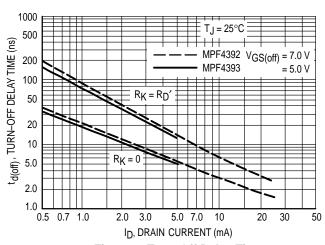


Figure 3. Turn-Off Delay Time

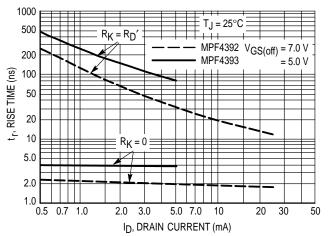


Figure 2. Rise Time



Figure 4. Fall Time

$-V_{DD}$ ≶RD SET VDS(off) = 10 V INPUT RT RGEN OUTPUT 50 Ω RGG 50 Ω ≥50Ω V_{GG} V_{GEN} INPUT PULSE $R_{GG} \gg R_{K}$ $t_{\Gamma} \le 0.25 \text{ ns}$ $R_D' = R_D(R_T + 50)$ $t_f \le 0.5 \text{ ns}$ $R_D + R_T + 50$ PULSE WIDTH = $2.0 \, \mu s$ DUTY CYCLE ≤ 2.0%

Figure 5. Switching Time Test Circuit

NOTE 1

The switching characteristics shown above were measured using a test circuit similar to Figure 5. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage (–VGG). The Drain–Source Voltage (VDS) is slightly lower than Drain Supply Voltage (VDD) due to the voltage divider. Thus Reverse Transfer Capacitance (Crss) or Gate–Drain Capacitance (Cgd) is charged to VGG + VDS.

During the turn–on interval, Gate–Source Capacitance (C_{gs}) discharges through the series combination of R_{Gen} and R_K . C_{gd} must discharge to $V_{DS(on)}$ through R_G and R_K in series with the parallel combination of effective load impedance (R'_D) and Drain–Source Resistance (r_{ds}). During the turn–off, this charge flow is reversed.

Predicting turn—on time is somewhat difficult as the channel resistance r_{dS} is a function of the gate—source voltage. While C_{gS} discharges, V_{GS} approaches zero and r_{dS} decreases. Since C_{gd} discharges through r_{dS} , turn—on time is non—linear. During turn—off, the situation is reversed with r_{dS} increasing as C_{gd} charges.

The above switching curves show two impedance conditions: 1) R_K is equal to R_D ′ which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2) $R_K = 0$ (low impedance) the driving source impedance is that of the generator.

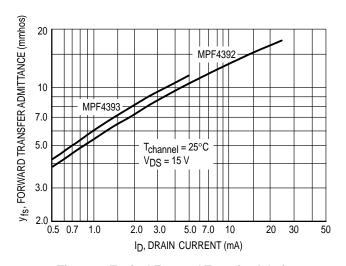


Figure 6. Typical Forward Transfer Admittance

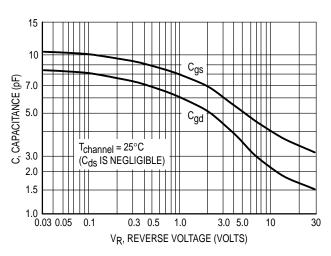


Figure 7. Typical Capacitance

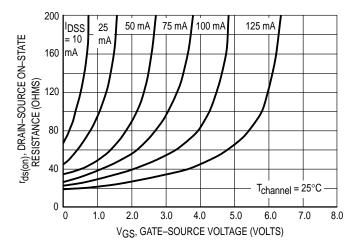


Figure 8. Effect of Gate-Source Voltage On Drain-Source Resistance

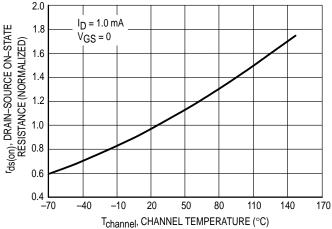


Figure 9. Effect of Temperature On Drain–Source On–State Resistance

MPF4392 MPF4393

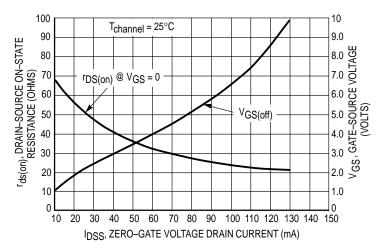
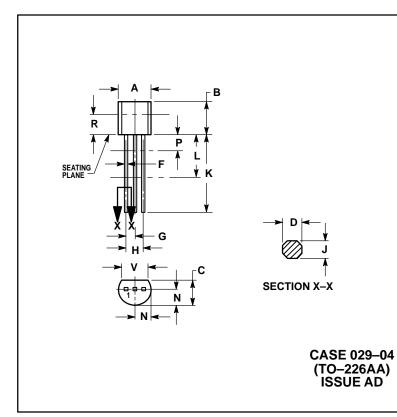


Figure 10. Effect of I_{DSS} On Drain-Source Resistance and Gate-Source Voltage

NOTE 2

The Zero–Gate–Voltage Drain Current (IDSS), is the principle determinant of other J–FET characteristics. Figure 10 shows the relationship of Gate–Source Off Voltage (VGS(off)) and Drain–Source On Resistance (rds(on)) to IDSS. Most of the devices will be within $\pm 10\%$ of the values shown in Figure 10. This data will be useful in predicting the characteristic variations for a given part number.


For example:

Unknown

rds(on) and VGS range for an MPF4392

The electrical characteristics table indicates that an MPF4392 has an IDSS range of 25 to 75 mA. Figure 10 shows $r_{dS(ON)} = 52$ Ohms for IDSS = 25 mA and 30 Ohms for IDSS = 75 mA. The corresponding VGS values are 2.2 volts and 4.8 volts.

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. DIMENSION FAPPLIES BETWEEN P AND L. DIMENSION D AND J. APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

STYLE 5:
PIN 1. DRAIN
2. SOURCE
3. GATE

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 – US & Canada ONLY 1–800–774–1848

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81–3–5487–8488

TOUCHTONE 602–244–6609
 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
 US & Canada ONLY 1–800–774–1848
 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Mfax is a trademark of Motorola. Inc.

INTERNET: http://motorola.com/sps

MPF4392/D