
JFET Amplifiers

P-Channel — Depletion

2N5460 thru 2N5462

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Gate Voltage	V_{DG}	40	Vdc	
Reverse Gate – Source Voltage	VGSR	40	Vdc	
Forward Gate Current	IG(f)	10	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C	
Junction Temperature Range	TJ	-65 to +135	°C	
Storage Channel Temperature Range	T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteris	tic	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS								
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	2N5460, 2N5461, 2N5462	V _(BR) GSS	40	_	_	Vdc		
Gate Reverse Current (V _{GS} = 20 Vdc, V _{DS} = 0) (V _{GS} = 30 Vdc, V _{DS} = 0)	2N5460, 2N5461, 2N5462	IGSS	_	_	5.0	nAdc		
(V _{GS} = 20 Vdc, V _{DS} = 0, T _A = 100°C) (V _{GS} = 30 Vdc, V _{DS} = 0, T _A = 100°C)	2N5460, 2N5461, 2N5462			_	1.0	μAdc		
Gate-Source Cutoff Voltage	2N5460 2N5461	VGS(off)	0.75 1.0	_	6.0 7.5	Vdc		
$(V_{DS} = 15 \text{ Vdc}, I_{D} = 1.0 \mu\text{Adc})$	2N5462		1.8		9.0			
Gate – Source Voltage (VDS = 15 Vdc, ID = 0.1 mAdc)	2N5460	V _{GS}	0.5	_	4.0	Vdc		
(VDS = 15 Vdc, ID = 0.1 IIIAdc) (VDS = 15 Vdc, ID = 0.2 mAdc) (VDS = 15 Vdc, ID = 0.4 mAdc)	2N5461 2N5462		0.8 1.5	_	4.5 6.0			
ON CHARACTERISTICS					•			
Zero-Gate-Voltage Drain Current (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5460 2N5461 2N5462	IDSS	-1.0 -2.0 -4.0	_ 	-5.0 -9.0 -16	mAdc		
SMALL-SIGNAL CHARACTERISTICS	3							
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5460 2N5461 2N5462	y _{fs}	1000 1500 2000	_ _ _	4000 5000 6000	μmhos		
Output Admittance (V _{DS} = 15 Vdc, V _{GS} =	0, f = 1.0 kHz)	y _{os}	_	_	75	μmhos		
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0), f = 1.0 MHz)	C _{iss}		5.0	7.0	pF		
Reverse Transfer Capacitance (V _{DS} = 15 \	$/dc$, $V_{GS} = 0$, $f = 1.0 \text{ MHz}$)	C _{rss}		1.0	2.0	pF		
FUNCTIONAL CHARACTERISTICS								
Noise Figure $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, R_G = 1.0 \text{ Mega})$	ohm, f = 100 Hz, BW = 1.0 Hz)	NF		1.0	2.5	dB		
Equivalent Short–Circuit Input Noise Voltag (VDS = 15 Vdc, VGS = 0, f = 100 Hz, BW		e _n	_	60	115	nV/√Hz		

2N5460 thru 2N5462

DRAIN CURRENT versus GATE SOURCE VOLTAGE

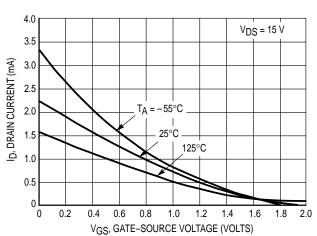


Figure 1. VGS(off) = 2.0 Volts

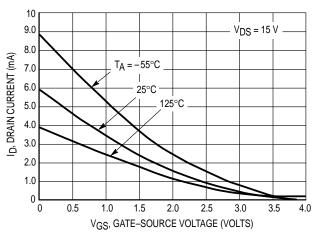


Figure 2. VGS(off) = 4.0 Volts

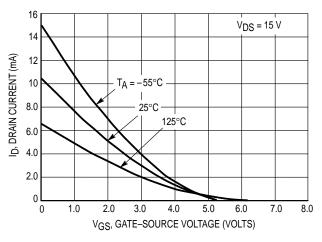


Figure 3. $V_{GS(off)} = 5.0 \text{ Volts}$

FORWARD TRANSFER ADMITTANCE versus DRAIN CURRENT

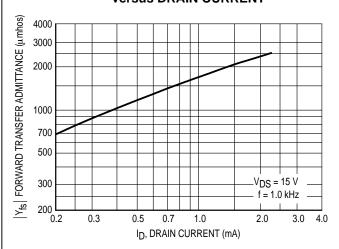


Figure 4. VGS(off) = 2.0 Volts

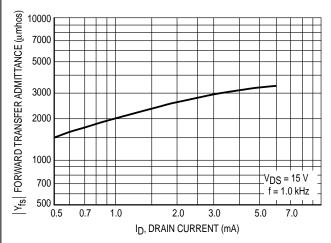


Figure 5. VGS(off) = 4.0 Volts

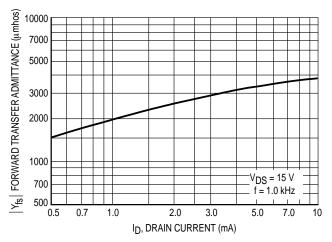


Figure 6. V_{GS(off)} = 5.0 Volts

2N5460 thru 2N5462

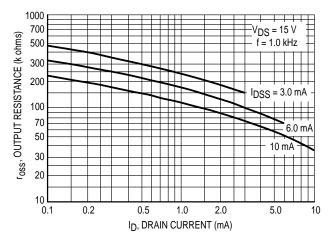


Figure 7. Output Resistance versus Drain Current

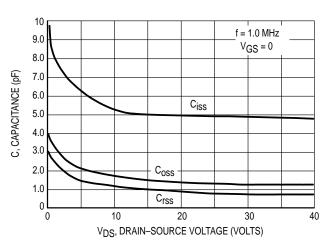


Figure 8. Capacitance versus Drain-Source Voltage

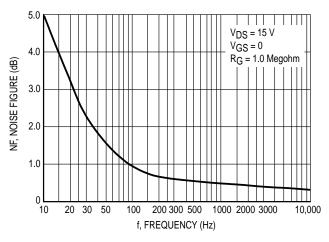


Figure 9. Noise Figure versus Frequency

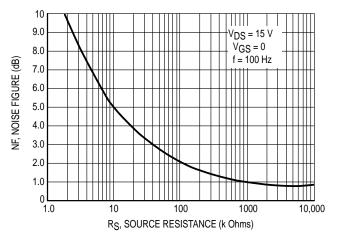
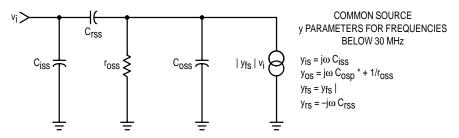
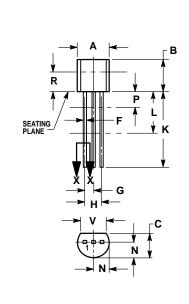



Figure 10. Noise Figure versus Source Resistance


 * C_{OSP} is C_{OSS} in parallel with Series Combination of C_{ISS} and $C_{TSS}.$

NOTE:

 Graphical data is presented for dc conditions. Tabular data is given for pulsed conditions (Pulse Width = 630 ms, Duty Cycle = 10%).

Figure 11. Equivalent Low Frequency Circuit

PACKAGE DIMENSIONS

CASE 029-04 (TO-226AA) ISSUE AD

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. DIMENSION F APPLIES BETWEEN P AND L.
- DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED
 IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
V	0 135		3 43		

STYLE 7: PIN 1. SOURCE

2. 3. DRAIN

GATE

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps

2N5460/D