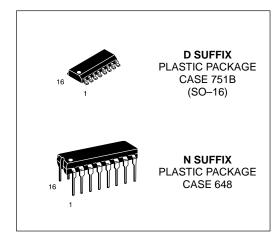


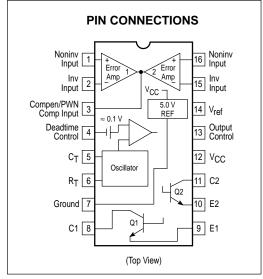
Precision Switchmode Pulse Width Modulation Control Circuit

The TL594 is a fixed frequency, pulse width modulation control circuit designed primarily for Switchmode power supply control.

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 V Reference, 1.5% Accuracy
- Adjustable Deadtime Control
- Uncommitted Output Transistors Rated to 500 mA Source or Sink
- Output Control for Push-Pull or Single-Ended Operation
- Undervoltage Lockout

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)


Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	42	V
Collector Output Voltage	V _{C1} , V _{C2}	42	V
Collector Output Current (each transistor) (Note 1)	I _{C1} , I _{C2}	500	mA
Amplifier Input Voltage Range	VIR	-0.3 to +42	V
Power Dissipation @ T _A ≤ 45°C	PD	1000	mW
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	80	°C/W
Operating Junction Temperature	TJ	125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Operating Ambient Temperature Range TL594ID, CN TL594CD, IN	ТА	0 to +70 -25 to +85	°C
Derating Ambient Temperature	TA	45	°C


NOTES: 1. Maximum thermal limits must be observed.

TL594

PRECISION SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUIT

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
TL594CD	$T_{\Delta} = 0^{\circ} \text{ to } +70^{\circ}\text{C}$	SO-16
TL594CN	1Α=0 10+70 C	Plastic
TL594IN	$T_A = -25^{\circ} \text{ to } +85^{\circ}\text{C}$	Plastic

TL594

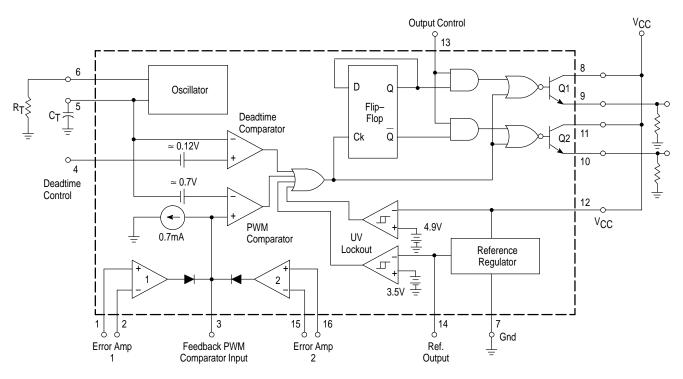
RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	7.0	15	40	V
Collector Output Voltage	V _{C1} , V _{C2}	-	30	40	V
Collector Output Current (Each transistor)	I _{C1} , I _{C2}	_	-	200	mA
Amplified Input Voltage	V _{in}	0.3	1	V _{CC} – 2.0	V
Current Into Feedback Terminal	l _{fb}	_	_	0.3	mA
Reference Output Current	I _{ref}	_	_	10	mA
Timing Resistor	RT	1.8	30	500	kΩ
Timing Capacitor	CT	0.0047	0.001	10	μF
Oscillator Frequency	fosc	1.0	40	200	kHz
PWM Input Voltage (Pins 3, 4, 13)	_	0.3	_	5.3	V

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, C_T = 0.01 μ F, R_T = 12 $k\Omega$, unless otherwise noted.) For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.

Characteristics	Symbol	Min	Тур	Max	Unit
REFERENCE SECTION			•		•
Reference Voltage ($I_O = 1.0 \text{ mA}, T_A = 25^{\circ}\text{C}$) ($I_O = 1.0 \text{ mA}$)	V _{ref}	4.925 4.9	5.0	5.075 5.1	V
Line Regulation (V _{CC} = 7.0 V to 40 V)	Reg _{line}	-	2.0	25	mV
Load Regulation (I _O = 1.0 mA to 10 mA)	Reg _{load}	-	2.0	15	mV
Short Circuit Output Current (V _{ref} = 0 V)	ISC	15	40	75	mA
OUTPUT SECTION					
Collector Off–State Current (V _{CC} = 40 V, V _{CE} = 40 V)	IC(off)	_	2.0	100	μА
Emitter Off–State Current (V _{CC} = 40 V, V _C = 40 V, V _E = 0 V)	IE(off)	_	-	-100	μА
Collector–Emitter Saturation Voltage (Note 2) Common–Emitter ($V_E = 0 \text{ V}, I_C = 200 \text{ mA}$) Emitter–Follower ($V_C = 15 \text{ V}, I_E = -200 \text{ mA}$)	VSAT(C) VSAT(E)	- -	1.1 1.5	1.3 2.5	V
Output Control Pin Current Low State ($V_{OC} \le 0.4 \text{ V}$) High State ($V_{OC} = V_{ref}$)	I _{OCL}	- -	0.1 2.0	- 20	μА
Output Voltage Rise Time Common–Emitter (See Figure 13) Emitter–Follower (See Figure 14)	t _r	- -	100 100	200 200	ns
Output Voltage Fall Time Common–Emitter (See Figure 13) Emitter–Follower (See Figure 14)	tf	- -	40 40	100 100	ns
ERROR AMPLIFIER SECTION					
Input Offset Voltage (VO (Pin 3) = 2.5 V)	VIO	_	2.0	10	mV
Input Offset Current (VO (Pin 3) = 2.5 V)	ΙO	-	5.0	250	nA
Input Bias Current (V _O (Pin 3) = 2.5 V)	I _{IB}	_	-0.1	-1.0	μΑ
Input Common Mode Voltage Range (V _{CC} = 40 V, T _A = 25°C)	VICR		0 to V _{CC} -2.0		V
Inverting Input Voltage Range	V _{IR(INV)}	-0.3 to V _{CC} -2.0		.0	V
Open Loop Voltage Gain (Δ V $_{O}$ = 3.0 V, V $_{O}$ = 0.5 V to 3.5 V, R $_{L}$ = 2.0 k Ω)	AVOL	70	95	-	dB
Unity–Gain Crossover Frequency (V_O = 0.5 V to 3.5 V, R_L = 2.0 k Ω)	fC	-	700	-	kHz
Phase Margin at Unity–Gain (V $_{O}$ = 0.5 V to 3.5 V, R $_{L}$ = 2.0 k $_{\Omega}$)	φm	-	65	-	deg.
Common Mode Rejection Ratio (V _{CC} = 40 V)		65	90	-	dB
Power Supply Rejection Ratio (Δ V _{CC} = 33 V, V _O = 2.5 V, R _L = 2.0 k Ω)	PSRR	-	100	-	dB
Output Sink Current (VO (Pin 3) = 0.7 V)	I _O -	0.3	0.7	-	mA
Output Source Current (VO (Pin 3) = 3.5 V)	IO+	-2.0	-4.0	-	mA

NOTE: 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.


TL594

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, C_T = 0.01 μ F, R_T = 12 $k\Omega$, unless otherwise noted.) For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.

	 				
Characteristics	Symbol	Min	Тур	Max	Unit
PWM COMPARATOR SECTION (Test Circuit Figure 11)			•	•	
Input Threshold Voltage (Zero Duty Cycle)	VTH	_	3.6	4.5	V
Input Sink Current (Vpin 3 = 0.7 V)	I _I	0.3	0.7	-	mA
DEADTIME CONTROL SECTION (Test Circuit Figure 11)					
Input Bias Current (Pin 4) (VPin 4 = 0 V to 5.25 V)	IB (DT)	-	-2.0	-10	μА
Maximum Duty Cycle, Each Output, Push–Pull Mode (VPin 4 = 0 V, CT = 0.01 μF, RT = 12 kΩ) (VPin 4 = 0 V, CT = 0.001 μF, RT = 30 kΩ)	DC _{max}	45 -	48 45	50 -	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	Vтн	_ 0	2.8 -	3.3	V
OSCILLATOR SECTION					
Frequency $ \begin{array}{l} (C_T=0.001~\mu\text{F},~R_T=30~k\Omega) \\ (C_T=0.01~\mu\text{F},~R_T=12~k\Omega,~T_A=25^{\circ}\text{C}) \\ (C_T=0.01~\mu\text{F},~R_T=12~k\Omega,~T_A=T_{low}~to~T_{high}) \end{array} $	fosc	9.2 9.0	40 10 –	- 10.8 12	kHz
Standard Deviation of Frequency* ($C_T = 0.001~\mu F,~R_T = 30~k\Omega$)	σf _{osc}	-	1.5	_	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V, T _A = 25°C)	Δf _{OSC} (ΔV)	-	0.2	1.0	%
Frequency Change with Temperature $(\Delta T_A = T_{low} \text{ to } T_{high}, C_T = 0.01 \mu F, R_T = 12 \text{ k}\Omega)$	Δf _{OSC} (ΔT)	_	4.0	-	%
UNDERVOLTAGE LOCKOUT SECTION			•	•	•
Turn–On Threshold (V _{CC} Increasing, I_{ref} = 1.0 mA) T_A = 25°C T_A = T_{low} to T_{high}	V _{th}	4.0 3.5	5.2 -	6.0 6.5	V
Hysteresis TL594C,I TL594M	VH	100 50	150 150	300 300	mV
TOTAL DEVICE					
Standby Supply Current (Pin 6 at V_{ref} , All other inputs and outputs open) (V_{CC} = 15 V) (V_{CC} = 40 V)	ICC	- -	8.0 8.0	15 18	mA
Average Supply Current (Vpin 4 = 2.0 V, CT = 0.01 μ F, RT = 12 k Ω , VCC = 15 V, See Figure 11)		-	11	-	mA

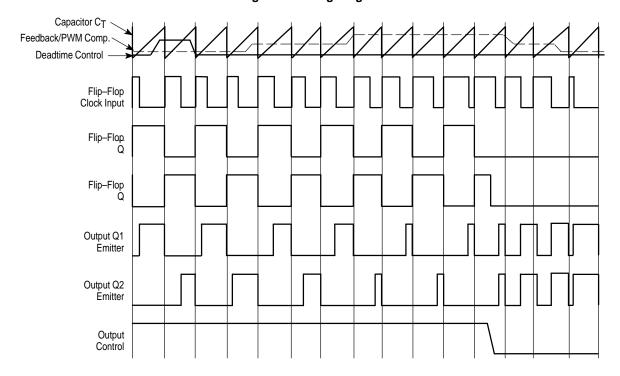

* Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, $\sigma = \sqrt{\frac{\sum\limits_{N}^{N} (X_{N} - X)^{2}}{\sum\limits_{N}^{N} (X_{N} - X)^{2}}}$

Figure 1. Representative Block Diagram

This device contains 46 active transistors.

Figure 2. Timing Diagram

TL594 APPLICATIONS INFORMATION

Description

The TL594 is a fixed–frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal–linear sawtooth oscillator is frequency–programmable by two external components, R_T and C_T . The approximate oscillator frequency is determined by:

$$f_{OSC} \approx \frac{1.1}{R_T \cdot C_T}$$

For more information refer to Figure 3.

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the deadtime control, the error amplifier inputs, or the feedback input. The deadtime control comparator has an effective 120 mV input offset which limits the minimum output deadtime to approximately the first 4% of the sawtooth–cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional deadtime may be imposed on the output by setting the deadtime–control input to a fixed voltage, ranging between 0 V to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on–time, established by the deadtime control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V. Both error amplifiers have a

Functional Table

Input/Output Controls	Output Function	fout fosc =
Grounded	Single-ended PWM @ Q1 and Q2	1.0
@ V _{ref}	Push-pull Operation	0.5

common–mode input range from -0.3 V to (V_{CC} -2 V), and may be used to sense power–supply output voltage and current. The error–amplifier outputs are active high and are ORed together at the noninverting input of the pulse–width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor CT is discharged, a positive pulse is generated on the output of the deadtime comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL594 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of $\pm 1.5\%$ with a typical thermal drift of less than 50 mV over an operating temperature range of 0° to 70°C.

Figure 3. Oscillator Frequency versus Timing Resistance

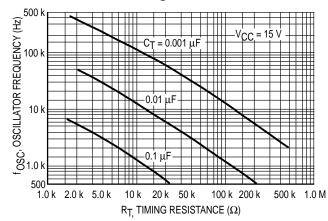


Figure 4. Open Loop Voltage Gain and Phase versus Frequency

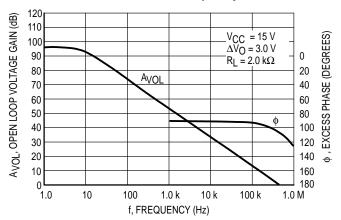


Figure 5. Percent Deadtime versus **Oscillator Frequency**

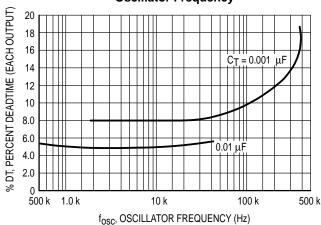


Figure 6. Percent Duty Cycle versus **Deadtime Control Voltage**

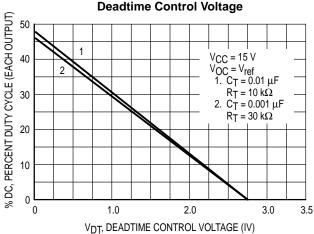


Figure 7. Emitter-Follower Configuration **Output Saturation Voltage versus Emitter Current**

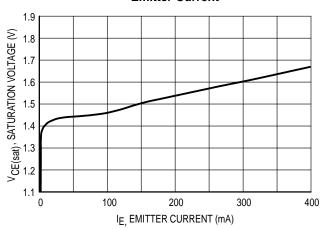


Figure 8. Common-Emitter Configuration **Output Saturation Voltage versus Collector Current**

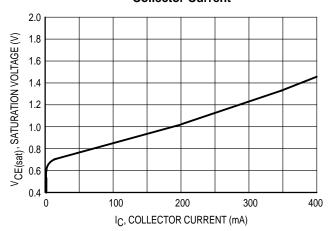


Figure 9. Standby Supply Current versus Supply Voltage

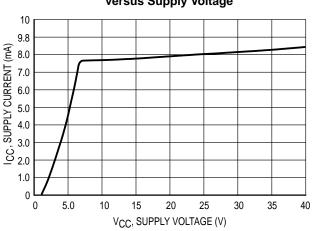


Figure 10. Undervoltage Lockout Thresholds

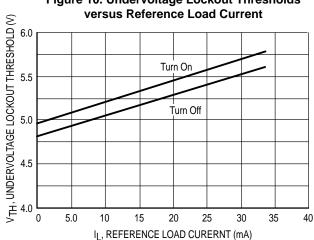


Figure 11. Error-Amplifier Characteristics

Figure 11. Error-Amplifier Characteristics

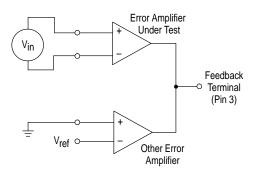


Figure 12. Deadtime and Feedback Control Circuit

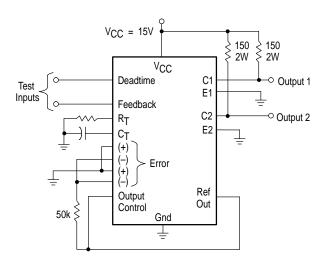


Figure 13. Common–Emitter Configuration
Test Circuit and Waveform

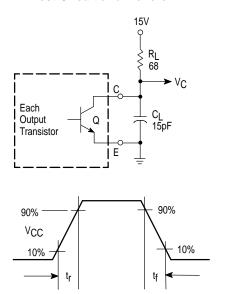
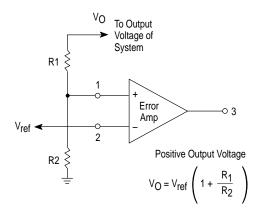



Figure 14. Emitter–Follower Configuration
Test Circuit and Waveform

Figure 15. Error-Amplifier Sensing Techniques

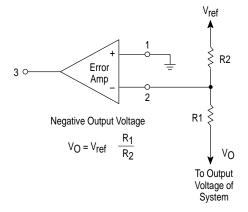


Figure 16. Deadtime Control Circuit

Figure 17. Soft-Start Circuit

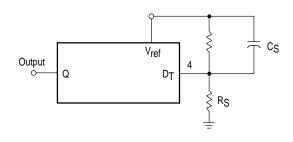


Figure 18. Output Connections for Single-Ended and Push-Pull Configurations

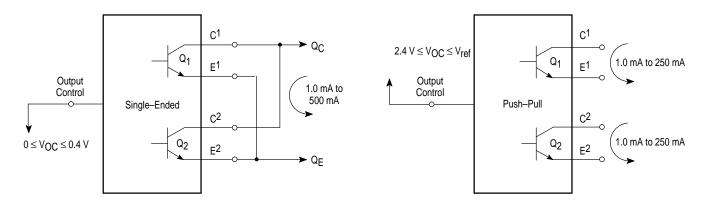
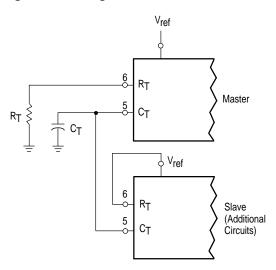



Figure 19. Slaving Two or More Control Circuits

Figure 20. Operation with V_{in} > 40 V Using External Zener

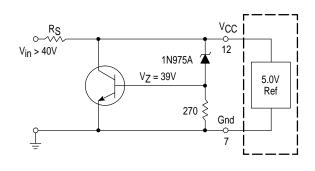
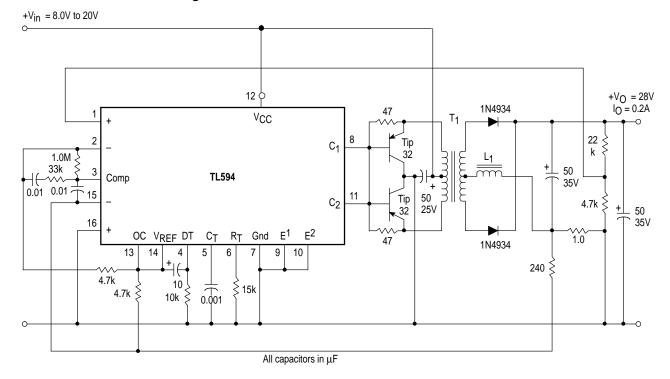
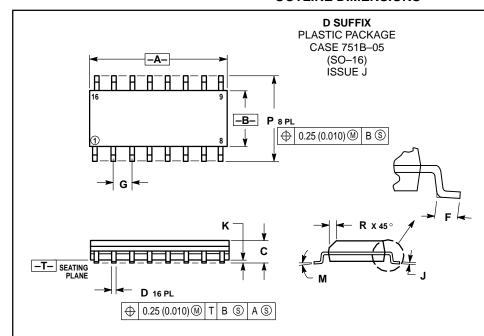



Figure 21. Pulse Width Modulated Push-Pull Converter

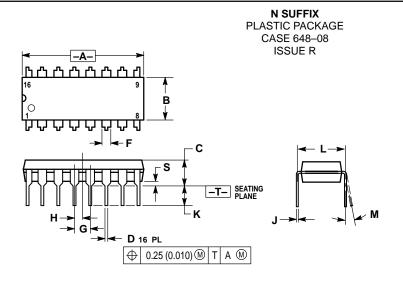
Test	Conditions	Results
Line Regulation	V _{in} = 10 V to 40 V	14 mV 0.28%
Load Regulation	$V_{in} = 28 \text{ V}, I_{O} = 1.0 \text{ mA to } 1.0 \text{ A}$	3.0 mV 0.06%
Output Ripple	V _{in} = 28 V, I _O = 1.0 A	65 mVpp P.A.R.D.
Short Circuit Current	$V_{in} = 28 \text{ V}, R_L = 0.1 \Omega$	1.6 A
Efficiency	V _{in} = 28 V, I _O = 1.0 A	71%

L1 - 3.5 mH @ 0.3 A


T1 – Primary: 20T C.T. #28 AWG Secondary: 12OT C.T. #36 AWG Core: Ferroxcube 1408P–L00–3CB

1.0mH @ 2.0A $+V_{in} = 10V \text{ to } 40V$ $+V_0 = 5.0V$ Tip 32A $\overline{\mathbb{R}}$ I_O = 1.0A √√ 47 150 47k 12 0 0.1 8 11 1.0M VCC C_1 C_2 3 Comp 2 5.1k 5.1k 50 ±+ 14 TL594 V_{ref} 500 10V 15 **★** MR850 5.1k 16 D.T. O.C. Gnd E_1 E_2 RΤ ± 50 10V 5 13 9 10 6 150 **§** 47k ≥ 0.1

Figure 22. Pulse Width Modulated Step-Down Converter


Test	Conditions	Results	
Line Regulation	V _{in} = 8.0 V to 40 V	3.0 mV 0.01%	
Load Regulation	$V_{in} = 12.6 \text{ V}, I_{O} = 0.2 \text{ mA to } 200 \text{ mA}$	5.0 mV 0.02%	
Output Ripple	V _{in} = 12.6 V, I _O = 200 mA	40 mVpp P.A.R.D.	
Short Circuit Current	$V_{in} = 12.6 \text{ V}, R_L = 0.1 \Omega$	250 mA	
Efficiency	V _{in} = 12.6 V, I _O = 200 mA	72%	

TL594 OUTLINE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	0.100 BSC		BSC	
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Motorola and Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

