MC33765

Very Low Dropout/ Ultra Low Noise 5 Outputs Voltage Regulator

The MC33765 is an ultra low noise, very low dropout voltage regulator with five independent outputs which is available in TSSOP 16 surface mount package.
The MC33765 is available in 2.8 V . The output voltage is the same for all five outputs but each output is capable of supplying different currents up to 150 mA for output 4 . The device features a very low dropout voltage (0.11 V typical for maximum output current), very low quiescent current ($5.0 \mu \mathrm{~A}$ maximum in OFF mode, $130 \mu \mathrm{~A}$ typical in ON mode) and one of the output (output 3) exhibits a very low noise level which allows the driving of noise sensitive circuitry. Internal current and thermal limiting protections are provided.
Additionally, the MC33765 has an independent Enable input pin for each output. It includes also a common Enable pin to shutdown the complete circuit when not used. The Common Enable pin has the highest priority over the five independent Enable input pins.

The voltage regulators VR1, VR2 and VR3 have a common input voltage pin V_{CC}.
The other voltage regulators VR4 and VR5 have a common input voltage pin $\mathrm{V}_{\mathrm{CC}}{ }^{2}$.

- Five Independent Outputs at 2.8 V Typical, based upon voltage version
- Internal Trimmed Voltage Reference
- $V_{\text {out }}$ Tolerance $\pm 3.0 \%$ over the Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Enable Input Pin (Logic-Controlled Shutdown) for Each of the Five Outputs
- Common Enable Pin to Shutdown the Whole Circuit
- Very Low Dropout Voltage (0.11 V Typical for Output 1, 2, 3 and 5; 0.17 V Typical for Output 4 at Maximum Current)
- Very Low Quiescent Current (Maximum $5.0 \mu \mathrm{~A}$ in OFF Mode, $130 \mu \mathrm{~A}$ Typical in ON Mode)
- Ultra Low Noise for VR3 ($30 \mu \mathrm{~V}$ RMS Max, $100 \mathrm{~Hz}<\mathrm{f}<100 \mathrm{kHz}$)
- Internal Current and Thermal Limit
- 100 nF for VR1, VR2, VR4 and VR5 and $1.0 \mu \mathrm{~F}$ for VR3 for Stability
- Supply Voltage Rejection: 60 dB (Typical) @ $\mathrm{f}=1.0 \mathrm{kHz}$

ON Semiconductor
http://onsemi.com
MARKING
DIAGRAMS

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping
MC33765DTB	TSSOP16	96 Units/Rail
MC33765DTBR2	TSSOP16	2500 Units/Reel

MC33765
Simplified Block Diagram

MC33765

MAXIMUM RATINGS

Rating	Symbol	Pin \#	Value	Unit
Power Supply Voltage	V_{CC}		5.3	V
Thermal Resistance Junction-to-Air	$\mathrm{R}_{\theta J \mathrm{~J}}$		140	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Ambient Temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature	T_{J}		125	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$		150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$		-60 to +150	${ }^{\circ} \mathrm{C}$

CONTROL ELECTRICAL CHARACTERISTICS
ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} / \mathrm{Max} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)

Characteristics	Symbol	Pin \#	Min	Typ	Max	Unit
Independent Enable Pins						
Input Voltage Range	VON/OFF(1-5)		0	-	V_{CC}	V
Control Input Impedance			100	-	-	k Ω
Logic "0", i.e. OFF State Logic "1", i.e. ON State	VON/OFF(1-5)		2.0	-	0.5	V

Common Enable Pin

Input Voltage Range	V_{CE}	2	0	-	V_{CC}	V
Control Input Impedance		2	100	-	-	$\mathrm{k} \Omega$
Logic "0", i.e. OFF State Logic "1", i.e. ON State	$\mathrm{V}_{\text {CE }}$	2	-	-	0.3	V

ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} / \mathrm{Max} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)

Characteristics	Symbol	Min	Typ	Max	Unit
CURRENT CONSUMPTION with NO LOAD					
Current Consumption at Logic " 0 " for the complete device, i.e. Common Enable and All Independent Enable pins at OFF State	IQOFF	-	-	5.0	$\mu \mathrm{A}$
Current Consumption at Logic " 1 " for the complete device, i.e. Common Enable and All Independents Enable pins at ON State	IQON1	-	470	-	$\mu \mathrm{A}$
Current Consumption at Logic "1", Common Enable at ON State and All Independents Enable pins at OFF State	IQON2	-	130	-	$\mu \mathrm{A}$

MC33765

REGULATOR ELECTRICAL CHARACTERISTICS
ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} / \mathrm{Max} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)

Characteristics	Symbol	Pin \#	Min	Typ	Max	Unit
Supply and Output Voltages, Dropout and Load Regulation						
Supply Voltage $\mathrm{V}_{\text {CC }} \quad$ MC33765 (2.8V)	$\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$	15, 10	3.0	3.6	5.3	V
Regulator Output Voltage for VR1, VR2, VR3, VR4 and VR5 MC33765 (2.8V)	V OUT(1-5)	$\begin{gathered} 14,13,12 \\ 11,9 \end{gathered}$	2.7	2.8	2.85	v
Dropout Voltage for VR1, VR2, VR3, VR5 (Note 1.)	$\mathrm{V}_{\text {CC }}{ }^{-\mathrm{V}_{\text {OUT }}}$	$\begin{gathered} \hline 14,13, \\ 12,9 \end{gathered}$	-	0.11	0.17	V
Dropout Voltage for VR4 (Note 1.)	VCC-VOUT4	11	-	0.17	0.30	V
Load Regulation ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Regload(1-5)	$\begin{gathered} \hline 9,11,12, \\ 13,14 \\ \hline \end{gathered}$	-	-	0.5	$\begin{gathered} \mathrm{mV} / \\ \mathrm{mA} \end{gathered}$

Max Power Dissipation and Total DC Output Current (VR1 + VR2 + VR3 + VR4 + VR5) (Note 2.)

Max Power Dissipation at $\mathrm{V}_{\mathrm{C}}=5.3 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\mathrm{dmax}}$		-	-	285	mW
Max. Total RMS Output Current at $\mathrm{V}_{\mathrm{CC}}=5.3 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	I RMS		-	-	130	mA
Max Power Dissipation at $\mathrm{V}_{\mathrm{CC}}=5.3 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\mathrm{dmax}}$		-	-	700	mW
Max. Total RMS Output Current at $\mathrm{V}_{\mathrm{CC}}=5.3 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{R}} \mathrm{RS}$		-	-	250	mA

Output Currents (Note 3.)

Regulator VR1 Output Current	IOUT1	14	10	-	30	mA
Regulator VR2 Output Current	IOUT2	13	10	-	40	mA
Regulator VR3 Output Current	IOUT3	12	0	-	50	mA
Regulator VR4 Output Current	IOUT4	11	10	-	150	mA
Regulator VR5 Output Current	IOUT5	9	10	-	60	mA
Current Limit for VR1, VR2, VR3, VR4, VR5 [Twice the max Output Current for each output]	IMAX	$\begin{gathered} 14,13,12 \\ 11,9 \end{gathered}$	-	$\begin{gathered} 2 \times \mathrm{IOUT} \\ \hline(1-5) \end{gathered}$	-	mA

External Capacitors

External Compensation Capacitors for VR1, VR2, VR4, VR5	$\mathrm{C}_{(1-2,4-5)}$	$14,13,11,9$	0.10	-	1.0	$\mu \mathrm{~F}$
External Compensation Capacitors for VR3	C_{4}	12	1.0	-	-	$\mu \mathrm{F}$
External Compensation Capacitors ESR			0.05	1.0	3.0	Ω

Ripple Rejections

Ripple Rejection VR1, VR2, VR4, VR5 (at Max. Current, $1.0 \mathrm{kHz}, \mathrm{C}=100 \mathrm{nF}$)	$\frac{\left(\Delta \mathrm{V}_{\mathrm{OUT}}\right)}{\left(\Delta \mathrm{V}_{\mathrm{CC}}\right)}$	$\begin{gathered} 14,13 \\ 11,9 \end{gathered}$	50	60	-	dB
Ripple Rejection VR1, VR2, VR4, VR5 (at Max. Current, $\mathrm{f}=10 \mathrm{kHz}, \mathrm{C}=100 \mathrm{nF}$)	$\frac{\left(\Delta \mathrm{V}_{\mathrm{OUT}}\right)}{\left(\Delta \mathrm{V}_{\mathrm{CC}}\right)^{\prime}}$	$\begin{gathered} \hline 14,13, \\ 11,9 \end{gathered}$	40	45	-	dB
Ripple Rejection of VR3 (at Max. Current, $f=1.0 \mathrm{kHz}, \mathrm{C}=1.0 \mu \mathrm{~F}$)	$\frac{\left(\Delta \mathrm{V}_{\mathrm{OUT}}\right)}{\left(\Delta \mathrm{V}_{\mathrm{CC}}\right)}$	12	50	60	-	dB
Ripple Rejection of VR3 (at Max. Current, $\mathrm{f}=10 \mathrm{kHz}, \mathrm{C}=1.0 \mu \mathrm{~F}$)	$\frac{\left(\Delta \mathrm{V}_{\mathrm{OUT}}\right)}{\left(\Delta \mathrm{V}_{\mathrm{CC}}\right)}$	12	40	45	-	dB
Ripple Rejection of VR3 (at Max. Current, $f=100 \mathrm{kHz}, \mathrm{C}=1.0 \mu \mathrm{~F}$)	$\frac{\left(\Delta \mathrm{V}_{\mathrm{OUT}}\right)}{\left(\Delta \mathrm{V}_{\mathrm{CC}}\right)^{\prime}}$	12	18	22	-	dB

1. Typical dropout voltages have been measured at currents: Output1: 25 mA , Output2: 35 mA , Output3: 40 mA, Output4: 140 mA, Output5: 40 mA Maximum value of dropout voltages are measured at maximum specified current.
2. See package power dissipation and thermal protection.
3. Maximum Output Currents are peak values. Total DC current have to be set upon maximum power dissipation specification. Only Output 3 has been designed to be stable at minimum current of 0 mA .

REGULATOR ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min $/$ max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} / \mathrm{Max} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)

Characteristics	Symbol	Min	Typ	Max	Unit

Dynamic Parameters

Rise Time (1\% 99\%) Common Enable at ON state, Cbypass $=10 \mathrm{nF}$, lout at max. current VR1, VR2, VR4, VR5 with COUT $=100 \mathrm{nF}, \mathrm{T} A=25^{\circ} \mathrm{C}$ VR3 with COUT $=1.0 \mu \mathrm{~F}, \mathrm{~T} \mathrm{~A}=25^{\circ} \mathrm{C}$	ton	-	-	$\begin{gathered} 30 \\ 150 \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$
Fall Time (99\% 1\%) [COUT = 100 nF , IOUT = 30 mA] (Note 4.)	$\mathrm{t}_{\text {Off }}$	-	100	-	$\mu \mathrm{S}$
Overshoot (COUT $=100 \mathrm{nF}$ for VR1, VR2, VR4, VR5 and $\mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}$ for VR3) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Common Enable at ON state, independent enable from OFF to ON state		-	5	8	\%
Settling Time (to $\pm 0.1 \%$ of nominal) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Common Enable at ON state, independent enable from OFF to ON state		-	95	-	$\mu \mathrm{S}$

Noise and Crosstalks

Noise Voltage ($100 \mathrm{~Hz}<\mathrm{f}<100 \mathrm{kHz}$) with Cbypass $=100 \mathrm{nF}$ VR1, VR2, VR4, VR5 with COUT $=100 \mathrm{nF}$ VR3 with COUT $=1.0 \mu \mathrm{~F}$	-	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	30	$\mu \mathrm{V}$ RMS
Static crosstalk (DC shift) between the Regulator Output, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5.)	-	150	200	$\mu \mathrm{V}$
Dynamic CrossTalk Attenuation between the Regulator Outputs ($\mathrm{f}=10 \mathrm{kHz}$), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6.)	30	35	-	dB

Thermal Shutdown

Thermal Shutdown		-	160	-
${ }^{\circ} \mathrm{C}$				

4. The Fall time is highly dependent on the load conditions, i.e. load current for a specified value of COUT.
5. Static Crosstalk is a DC shift caused by switching ON one of the outputs through independent enable to all other outputs. This parameter is highly dependent on overall PCB layout and requires the implementation of low-noise GROUND rules (e.g. Ground plane).
6. Dynamic crosstalk is the ratio between a forced output signal to signal transferred to other outputs. This requires special device configuration to be measured.

MC33765 TYPICAL OSCILLOSCOPE SHOTS

Figure 1. Crosstalk response of MC33765 showing extremely weak interaction between outputs Output 4 is banged from 0 to 150 mA

Figure 2. Repetitive Common Enable response time

Figure 3. Single Common Enable response time (Cbypass discharged)

Figure 4. Output response from seperate Enable

MC33765

Figure 5. Output 4 is banged from 3 mA to 150 mA

Figure 6. Output 5 is banged from 3 mA to 50 mA

Figure 7. Typical input voltage rejection (Cout $=100 \mathrm{nF}$)

Figure 8. Typical input voltage rejection (Cout $=1 \mu \mathrm{~F}$)

MC33765

Figure 9. Dropout Voltage versus Output Current

Figure 11. Maximum Output Current versus Temperature

Figure 10. Ground Current versus Individual Output

Figure 12. Dropout Voltage versus Operating Temperature: OUT1

Figure 13. Dropout Voltage versus Operating Temperature: OUT2

Figure 14. Dropout Voltage versus Operating Temperature: OUT3

Figure 15. Dropout Voltage versus Operating Temperature: OUT4

Figure 16. Dropout Voltage versus Operating Temperature: OUT5

MC33765

DEFINITIONS

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.
Dropout Voltage - The input/output differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential input/output), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Output Noise Voltage - The RMS AC voltage at the output with a constant load and no input ripple, measured over a specified frequency range.

Maximum Power Dissipation - The maximum total dissipation for which the regulator will operate within specifications.

Quiescent Current - Current which is used to operate the regulator chip with no load current.

Line Regulation - The change in input voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Thermal Protection - Internal thermal shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically $160^{\circ} \mathrm{C}$, the regulator turns off. This feature is provided to prevent catastrophic failures from accidental overheating.

Maximum Package Power Dissipation and RMS Current - The maximum package power dissipation is the power dissipation level at which the junction temperature reaches its maximum value i.e. $125^{\circ} \mathrm{C}$. The junction temperature is rising while the difference between the input power $\left(V_{C C} X I_{C C}\right)$ and the output power $\left(V_{\text {out }} X_{\text {out }}\right)$ is increasing.

As MC33765 device exhibits five independent outputs $\mathrm{I}_{\text {out }}$ is specified as the maximum RMS current combination of the five output currents.

As the device can be switched ON/OFF through independent Enable (ON/OFF pin) or Common Enable, the output signal could be, for example, a square wave. Let's assume that the device is ON during T_{ON} on a signal period T. The RMS current will be given by:

$$
I_{\text {out }_{R M S}}=I_{P} \times \sqrt{D}
$$

where

$$
\mathrm{D}=\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}}
$$

Depending on ambient temperature, it is possible to calculate the maximum power dissipation and so the maximum RMS current as following:

$$
P d=\frac{T_{J}-T_{A}}{R_{\theta J A}}
$$

The maximum operating junction temperature T_{J} is specified at $125^{\circ} \mathrm{C}$, if $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, then $\mathrm{P}_{\mathrm{D}}=700 \mathrm{~mW}$. By neglecting the quiescent current, the maximum power dissipation can be expressed as:

$$
I_{\text {out }}=\frac{P_{D}}{V_{C C}-V_{\text {out }}}
$$

So that in the more drastic conditions:
$\mathrm{V}_{\mathrm{CC}}=5.3 \mathrm{~V}, \mathrm{~V}_{\text {out }}=2.7 \mathrm{~V}$ then the maximum RMS value of $\mathrm{I}_{\text {out }}$ is 269 mA .
The maximum power dissipation supported by the device is a lot increased when using appropriate application design. Mounting pad configuration on the PCB , the board material and also the ambient temperature are affected the rate of temperature rise. It means that when the I_{C} has good thermal conductivity through PCB, the junction temperature will be "low" even if the power dissipation is great.
The thermal resistance of the whole circuit can be evaluated by deliberately activating the thermal shutdown of the circuit (by increasing the output current or raising the input voltage for example).
Then you can calculate the power dissipation by subtracting the output power from the input power. All variables are then well known: power dissipation, thermal shutdown temperature ($160^{\circ} \mathrm{C}$ for MC33765) and ambient temperature.

$$
R_{\theta J A}=\frac{T_{J}-T_{A}}{P_{D}}
$$

MC33765

DESIGN HINTS
 Reducing the cross-talk between the MC33765 outputs

One of the origin of the DC shift finds its seat in the layout surrounding the integrated circuit. Particular care has to be taken when routing the output ground paths. Star grounding
or a ground plane are the absolute conditions to reduce the noise or shift associated to common impedance situations, as depicted by Figure 17.

Figure 17. Star Cabling Avoids Coupling by Common Ground Impedance

The first left cabling will generate a voltage shift which will superimpose on the output voltages, thus creating an undesirable offset. By routing the return grounds to a single
low impedance point, you naturally shield the circuit against common impedance disturbances. Figure 18 portraits the text fixture implemented to test the response of the MC33765.

Figure 18. DC Shift Text Fixture

MC33765

DESIGN HINTS (cont.)

Output 4 was banged from 0 to 150 mA via its dedicated control pin, while output 3 fixed at 50 mA was monitored. The circuit has been implemented on a PCB equipped with a

Figure 19. Vin $=4 \mathrm{~V}, \mathrm{Y} 1=62.5 \mu \mathrm{~V} / \mathrm{div}, \mathrm{F}=\mathbf{2 0 0 H z}$
ground plane and routed with short copper traces. The results are shown hereafter, revealing the excellent behavior of the MC33765 when crosstalks outputs is at utmost importance.

Figure 20. Vin $=5 \mathrm{~V}, \mathrm{Y} 1=1 \mathrm{mV} / \mathrm{div}$

MC33765

TECHNICAL TERMS

Rise Time - Common Enable being in ON state, the device is switched on by ON/OFF pin control.
Let's call t_{1} the time when ON/OFF signal reaches 1% of its nominal value.
Let's call t_{2} the time when output signal reaches 99% of its nominal value.
The rise time for this device is specified as:

$$
\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{1}-\mathrm{t}_{2}
$$

Fall Time - The fall time is highly dependent on the output capacitor and so device design is not impacting at all this parameter.

Overshoot, Settling Time - As regulators are based on regulation loop through an error amplifier, this type of device requires a certain time to stabilize and reach its nominal value.
The overshoot is defined as the voltage difference between the peak voltage and steady state when switching ON the regulator.

The settling time is equal to the time required by the regulator to stabilize to its nominal value ($\pm 0.5 \%$) after peak value when switching ON the regulator.

MC33765

PACKAGE DIMENSIONS

TSSOP-16
DTB SUFFIX
CASE 948F-01
ISSUE O

MC33765
Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative

