# PRESETTABLE BCD/DECADE **UP/DOWN COUNTER** PRESETTABLE 4-BIT BINARY UP/DOWN COUNTER The SN54/74LS192 is an UP/DOWN BCD Decade (8421) Counter and the SN54/74LS193 is an UP/DOWN MODULO-16 Binary Counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs. Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load (PL) and the Master Reset (MR) inputs asynchronously override the clocks. - Low Power . . . 95 mW Typical Dissipation - High Speed . . . 40 MHz Typical Count Frequency - Synchronous Counting - · Asynchronous Master Reset and Parallel Load - Individual Preset Inputs - · Cascading Circuitry Internally Provided - Input Clamp Diodes Limit High Speed Termination Effects ## **CONNECTION DIAGRAM DIP (TOP VIEW)** NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. LOADING (Note a) ### **PIN NAMES** #### HIGH LOW Count Up Clock Pulse Input 0.5 U.L. 0.25 U.L. CPU CPD Count Down Clock Pulse Input 0.25 U.L. 0.5 U.L. Asynchronous Master Reset (Clear) Input MR0.5 U.L. 0.25 U.L. Asynchronous Parallel Load (Active LOW) Input 0.25 U.L. 0.5 U.L. 0.5 U.L. Parallel Data Inputs 0.25 U.L. Qn Flip-Flop Outputs (Note b) 10 U.L. 5 (2.5) U.L. <u>TC</u>D Terminal Count Down (Borrow) Output (Note b) 10 U.L. 5 (2.5) U.L. Terminal Count Up (Carry) Output (Note b) TCU 10 U.L. 5 (2.5) U.L. NOTES: ΡL $P_{n}$ - a. 1 TTL Unit Load (U.L.) = 40 $\mu\text{A}$ HIGH/1.6 mA LOW. - b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. # SN54/74LS192 SN54/74LS193 PRESETTABLE BCD/DECADE **UP/DOWN COUNTER** PRESETTABLE 4-BIT BINARY **UP/DOWN COUNTER** LOW POWER SCHOTTKY #### STATE DIAGRAMS # LS192 LOGIC EQUATIONS FOR TERMINAL COUNT $\begin{array}{l} \overline{\underline{TC}}_U = \underline{Q_0} \cdot \underline{Q_3} \cdot \overline{\underline{CP_U}} \\ TC_D = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot \overline{\underline{CP_D}} \end{array}$ # LS193 LOGIC EQUATIONS FOR TERMINAL COUNT $\begin{array}{l} \overline{\underline{TC}}_U = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot \overline{\underline{CP_U}} \\ TC_D = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot \underline{CP_D} \end{array}$ #### **LOGIC DIAGRAMS** V<sub>CC</sub> = PIN 16 GND = PIN 8 = PIN NUMBERS # **LOGIC DIAGRAMS (continued)** $V_{CC}$ = PIN 16 GND = PIN 8 $\bigcirc$ = PIN NUMBERS #### **FUNCTIONAL DESCRIPTION** The LS192 and LS193 are Asynchronously Presettable Decade and 4-Bit Binary Synchronous UP/DOWN (Reversable) Counters. The operating modes of the LS192 decade counter and the LS193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations. Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW. <u>The Terminal Count Up (TCU)</u> and Terminal Count Down (TCD) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the LS192, 15 for the LS193), the next HIGH-to-LOW transition of the Count Up Clock will cause TCU to go LOW. TCU will stay LOW until CPU goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the TCD output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter. Each circuit has an asynchronous parallel load capability <u>per</u>mitting the counter to be preset. When the Parallel Load (PL) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs ( $P_0$ , $P_3$ ) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted. #### **MODE SELECT TABLE** | MR | PL | CPU | CPD | MODE | |----|----|-----|-----|----------------| | Н | Х | Х | Х | Reset (Asyn.) | | L | L | Х | X | Preset (Asyn.) | | L | Н | Н | Н | No Change | | L | Н | | Н | Count Up | | L | Н | Н | J | Count Down | L = LOW Voltage Level H = HIGH Voltage Level X = Don't Care ## **GUARANTEED OPERATING RANGES** | Symbol | Parameter | | Min | Тур | Max | Unit | |----------------|-------------------------------------|----------|-------------|------------|-------------|------| | VCC | Supply Voltage | 54<br>74 | 4.5<br>4.75 | 5.0<br>5.0 | 5.5<br>5.25 | V | | T <sub>A</sub> | Operating Ambient Temperature Range | 54<br>74 | -55<br>0 | 25<br>25 | 125<br>70 | °C | | loн | Output Current — High | 54, 74 | | | -0.4 | mA | | lOL | Output Current — Low | 54<br>74 | | | 4.0<br>8.0 | mA | # DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) | | | | Limits | | | | | | |------------------------------------|--------------------------------|--------|--------|-------|------|------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------| | Symbol | Parameter | | Min | Тур | Max | Unit | Tes | st Conditions | | VIH | Input HIGH Voltage | | 2.0 | | | V | Guaranteed Input HIGH Voltage for All Inputs | | | \/ | Input LOW Voltage | 54 | | | 0.7 | V | Guaranteed Input LOW Voltage for<br>All Inputs | | | VIL | | 74 | | | 0.8 | \ \ \ | | | | ٧ıK | Input Clamp Diode Voltage | | | -0.65 | -1.5 | V | V <sub>CC</sub> = MIN, I <sub>IN</sub> = -18 mA | | | | Output HIGH Voltage | 54 | 2.5 | 3.5 | | V | $V_{CC}$ = MIN, $I_{OH}$ = MAX, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ per Truth Table | | | VOH | | 74 | 2.7 | 3.5 | | V | | | | | Output LOW Voltage | 54, 74 | | 0.25 | 0.4 | ٧ | I <sub>OL</sub> = 4.0 mA | $V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{II} \text{ or } V_{IH}$ | | VOL | Output LOW Voltage | 74 | | 0.35 | 0.5 | ٧ | I <sub>OL</sub> = 8.0 mA | per Truth Table | | i | Les AUROLLO COM | | | | 20 | μΑ | V <sub>CC</sub> = MAX, V <sub>IN</sub> = 2.7 V | | | I <sub>IH</sub> Input HIGH Current | | | | 0.1 | mA | V <sub>CC</sub> = MAX, V <sub>IN</sub> = 7.0 V | | | | I <sub>I</sub> L | Input LOW Current | | | | -0.4 | mA | $V_{CC} = MAX$ , $V_{IN} = 0.4 V$ | | | los | Short Circuit Current (Note 1) | | -20 | | -100 | mA | V <sub>CC</sub> = MAX | | | Icc | Power Supply Current | | | | 34 | mA | V <sub>CC</sub> = MAX | | Note 1: Not more than one output should be shorted at a time, nor for more than 1 second. ## AC CHARACTERISTICS (T<sub>A</sub> = 25°C) | | | | Limits | | | | | |--------------------------------------|-------------------------|-----|----------|----------|------|---------------------------------------------------|--| | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | | | fMAX | Maximum Clock Frequency | 25 | 32 | | MHz | | | | <sup>t</sup> PLH<br><sup>t</sup> PHL | CPU Input to TCU Output | | 17<br>18 | 26<br>24 | ns | | | | <sup>t</sup> PLH<br><sup>t</sup> PHL | CPD Input to TCD Output | | 16<br>15 | 24<br>24 | ns | V <sub>CC</sub> = 5.0 V<br>C <sub>L</sub> = 15 pF | | | <sup>t</sup> PLH<br><sup>t</sup> PHL | Clock to Q | | 27<br>30 | 38<br>47 | ns | | | | <sup>t</sup> PLH<br><sup>t</sup> PHL | PL to Q | | 24<br>25 | 40<br>40 | ns | | | | <sup>t</sup> PHL | MR Input to Any Output | | 23 | 35 | ns | | | ## AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$ | | | Limits | | | | | | |------------------|-----------------|--------|-----|-----|------|-------------------------|--| | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | | | t <sub>W</sub> | Any Pulse Width | 20 | | | ns | | | | t <sub>S</sub> | Data Setup Time | 20 | | | ns | V 50V | | | t <sub>h</sub> | Data Hold Time | 5.0 | | | ns | V <sub>CC</sub> = 5.0 V | | | t <sub>rec</sub> | Recovery Time | 40 | | | ns | | | #### **DEFINITIONS OF TERMS** SETUP TIME $(t_S)$ is defined as the minimum time required for the correct logic level to be present at the logic input prior to the PL transition from LOW-to-HIGH in order to be recognized and transferred to the outputs. $\underline{\text{HO}}\text{LD}$ TIME (th) is defined as the minimum time following the PL transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recogni- tion. A negative HOLD TIME indicates that the correct logic level may be released prior to the PL transition from LOW-to-HIGH and still be recognized. RECOVERY TIME ( $t_{\text{FeC}}$ ) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs. # **AC WAVEFORMS** Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 \* The shaded areas indicate when the input is permitted to change for predictable output performance Figure 6 Figure 7