
+4 Divider

The MC100LVEL33 is an integrated $\div 4$ divider. The differential clock inputs and the VBB allow a differential, single-ended or AC coupled interface to the device. If used, the VBB output should be bypassed to ground with a $0.01\mu F$ capacitor. Also note that the VBB is designed to be used as an input bias on the EL33 only, the VBB output has limited current sink and source capability. The LVEL is functionally equivalent to the EL33 and works from a low voltage supply.

The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronization of multiple LVEL33's in a system.

- 630ps Propagation Delay
- 4.0GHz Toggle Frequency
- High Bandwidth Output Transitions
- Operates from -3.3V (or 3.3V) Supply
- 75kΩ Internal Input Pulldown Resistors
- >2000V ESD Protection

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

MC100LVEL33

D SUFFIXPLASTIC SOIC PACKAGE
CASE 751-05

PIN DESCRIPTION

PIN	FUNCTION
CLK	Clock Inputs
Reset	Asynch Reset
VBB	Ref Voltage Output
Q	Data Ouputs

DC CHARACTERISTICS (VEE = VEE(min) to VEE(max); VCC = GND)

		–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
IEE	Power Supply Current		33	37		33	37		33	37		35	39	mA
VEE	Power Supply Voltage	-3.0		-3.8	-3.0		-3.8	-3.0		-3.8	-3.0		-3.8	V
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
lН	Input HIGH Current			150			150			150			150	μΑ
IIL	Input LOW Current CLK Other	-600 0.5			-600 0.5			-600 0.5			-600 0.5			μА

AC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = GND$)

			–40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	Maximum Toggle Frequency	3.4	4.2		3.8	4.2		3.8	4.2		3.8	4.2		GHz
[†] PLH [†] PHL	Propagation Delay CLK to Q (Diff) CLK to Q (SE) Reset to Q	510 460 500		690 740 700	530 480 510		710 760 710	540 490 520		720 770 720	600 550 580		780 830 780	ps
t _{rr}	Reset Recovery	300			300			300			300			ps
t _{skew}	Duty Cycle Skew ²			20			20			20			20	ps
VPP	Minimum Input Swing ¹	150			150			150			150			mV
VCMR	Common Mode Range ³ Vpp < 500mV Vpp ≥ 500mV	-2.0 -1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	V
t _r	Output Rise/Fall Times Q (20% – 80%)	120		320	120		320	120		320	120		320	ps

- Minimum input swing for which AC parameters are guaranteed.
 Duty cycle skew is the difference between TPLH and TPLL.
 The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1V. The lower end of the CMR range varies 1:1 with VEE. The numbers in the spec table assume a nominal VEE = -3.3V. Note for PECL operation, the VCMR(min) will be fixed at 3.3V |VCMR(min)|.

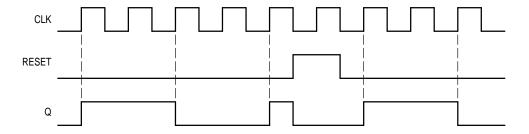


Figure 1. Timing Diagram

MOTOROLA 3-2

OUTLINE DIMENSIONS

D SUFFIX PLASTIC SOIC PACKAGE CASE 751–05 ISSUE P SEATING PLANE 0.25 (0.010) W T B S A S

NOTES:

- DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- 3. DIMENSIONS ARE IN MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 6. DIMENSION D DOES NOT INCLUDE MOLD
- DIMENSION D DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	4.80	5.00							
В	3.80	4.00							
C	1.35	1.75							
D	0.35	0.49							
F	0.40	1.25							
G	1.27	BSC							
۲	0.18	0.25							
K	0.10	0.25							
M	0 °	7 °							
Р	5.80	6.20							
R	0.25	0.50							

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and in a re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC100LVEL33/D