MC14543B

BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.
Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Capable of Driving 2 Low-power TTL Loads, 1 Low-power Schottky TTL Load or 2 HTL Loads Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4056A (with Pin 7 Tied to V_{SS}).
- Chip Complexity: 207 FETs or 52 Equivalent Gates

MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$) (Note 2.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage Range, All Inputs	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 3.)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OHmax }}$ $\mathrm{I}_{\text {OLmax }}$	Maximum Continuous Output Drive Current (Source or Sink)	10 (per Output)	mA
$\mathrm{P}_{\mathrm{OHmax}}$ $\mathrm{P}_{\text {OLmax }}$	Maximum Continuous Output Power (Source or Sink) (4.)	70 (per Output)	mW

2. Maximum Ratings are those values beyond which damage to the device may occur.
3. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
4. $\mathrm{P}_{\mathrm{OH} \max }=\mathrm{I}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{DD}}\right)$ and $\mathrm{P}_{\mathrm{OLmax}}=\mathrm{I}_{\mathrm{OL}}\left(\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{SS}}\right)$

ON Semiconductor
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC14543BCP	PDIP-16	2000/Box
MC14543BD	SOIC-16	48/Rail
MC14543BDR2	SOIC-16	2500/Tape \& Reel
MC14543BF	SOEIAJ-16	See Note 1.
MC14543BFEL	SOEIAJ-16	See Note 1.

1. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14543B

PIN ASSIGNMENT

TRUTH TABLE

Inputs							Outputs						
LD	BI	Ph*	D	C	B	A		b	c	d	e f	g	Display
X	1	0	X	X	X	X	0	0	0	0	00	0	Blank
1	0	0	0	0	0	0	1	1	1	1	11	0	0
1	0	0	0	0	0	1		1	1	0	00	0	1
1	0	0	0	0	1	0		1	0	1	10	1	2
1	0	0	0	0	1	1	1	1	1	1	00	1	3
1	0	0	0	1	0	0		1	1	0	01	1	4
1	0	0	0	1	0	1		0	1	1	01	1	5
1	0	0	0	1	1	0		0	1	1	11	1	6
1	0	0	0	1	1	1	1	1	1	0	00	0	7
1	0	0	1	0	0	0		1	1	1	11	1	8
1	0	0	1	0	0	1		1	1	1	01	1	9
1	0	0	1	0	1	0		0	0	0	00	0	Blank
1	0	0	1	0	1	1	0	0	0	0	00	0	Blank
1	0	0	1	1	0	0		0	0	0	00	0	Blank
1	0	0	1	1	0	1		0	0	0	00	0	Blank
1	0	0	1	1	1	0		0	0	0	00	0	Blank
1	0	0	1	1	1	1		0	0	0	00	0	Blank
0	0	0		X	X					**			**
\dagger	\dagger	\dagger		\dagger				nver Comb Abov	$\begin{aligned} & \text { se } \\ & \text { bina } \\ & \text { ve } \end{aligned}$	$\begin{aligned} & \text { of Ou } \\ & \text { ations } \end{aligned}$	utput s		Display as above
X = Don't care $\dagger=$ Above Combinations * = For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select $\mathrm{Ph}=0$ For common anode LED readouts, select $\mathrm{Ph}=1$													
** $=$ Depends upon the BCD code previously applied when LD $=1$													

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ ${ }^{(5 .)}$	Max	Min	Max	
$\begin{aligned} & \hline \text { Output Voltage } \quad \text { " } 0 \text { " Level } \\ & V_{\text {in }}=V_{D D} \text { or } 0 \end{aligned}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
"1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	Vdc
$\begin{array}{ll} \hline \text { Input Voltage } & \text { " } 0 \text { " Level } \\ \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ \left(V_{O}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{array}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
"1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=0.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\text {IOH }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ - \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -10.1 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ - \\ -0.9 \\ -2.4 \end{gathered}$	- - -	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	1 OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ \hline 4.2 \end{gathered}$	二	$\begin{aligned} & 0.51 \\ & 1.3 \\ & \frac{1}{3.4} \end{aligned}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 10.1 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ - \\ 2.4 \end{gathered}$	-	mAdc
Input Current	1 ln	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	μ Adc
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
$\begin{aligned} & \text { Quiescent Current } \\ & \text { (Per Package) } V_{\text {in }}=0 \text { or } V_{D D} \text {, } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	μ Adc
Total Supply Current (6.) (7.) (Dynamic plus Quiescent, Per Package) ($C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.1 \mu \mathrm{~A} / \mathrm{kHzz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(4.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

5. Noise immunity specified for worst-case input combination.

Noise Margin for both " 1 " and " 0 " level $=1.0 \mathrm{~V}$ min @ $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

$$
2.0 \mathrm{~V} \min @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}
$$

$$
2.5 \mathrm{~V} \min @ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}
$$

6. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+3.5 \times 10^{-3}\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{V}_{D D^{f}}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in V , and f in kHz is input frequency.
7. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS ${ }^{(8 .)}\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	V_{DD}	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{TLH}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\text {TLH }}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {THL }}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	—	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Turn-Off Delay Time $\begin{aligned} & \mathrm{t}_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+520 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+217 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+160 \mathrm{~ns} \end{aligned}$	$t_{\text {PLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	—	$\begin{aligned} & 605 \\ & 250 \\ & 185 \end{aligned}$	$\begin{gathered} 1210 \\ 500 \\ 370 \end{gathered}$	ns
Turn-On Delay Time $\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+420 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+172 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+130 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	—	$\begin{aligned} & 505 \\ & 205 \\ & 155 \end{aligned}$	$\begin{gathered} 1650 \\ 660 \\ 495 \end{gathered}$	ns
Setup Time	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 450 \\ & 500 \end{aligned}$		-	ns
Hold Time	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \end{aligned}$		-	ns
Latch Disable Pulse Width (Strobing Data)	$t_{\text {WH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 250 \\ 100 \\ 80 \end{gathered}$	$\begin{gathered} 125 \\ 50 \\ 40 \end{gathered}$	—	ns

8. The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

MC14543B

Figure 1. Typical Output Source Characteristics

Figure 2. Typical Output Sink Characteristics
(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.

C

(b) Inputs D, Ph, and BI low, and Inputs A and B high.

(c) Data DCBA strobed into latches

Figure 4. Dynamic Signal Waveforms

MC14543B

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LIQUID CRYSTAL (LC) READOUT

LIGHT EMITTING DIODE (LED) READOUT

NOTE: Bipolar transistors may be added for gain (for $\mathrm{V}_{\mathrm{DD}} \leq 10 \mathrm{~V}$ or $\mathrm{I}_{\text {out }} \geq 10 \mathrm{~mA}$).

INCANDESCENT READOUT

GAS DISCHARGE READOUT

CONNECTIONS TO SEGMENTS

$$
V_{D D}=P I N 16
$$

$V_{S S}=P I N 8$

MC14543B

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648-08
ISSUE R
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
CONTROLLING DIMENSION: INCH
2. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL
DIMENSION B DOES NOT INCLUDE MOLD FLASH
5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
H	0.050 BSC		1.27 BSC	
J	0.008	0.015	0.21	
	0.38			
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

SOIC-16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B-05

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DONOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

SOEIAJ-16

F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966-01
ISSUE O

DETAIL P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	-	2.05	-	0.081		
$\mathrm{~A}_{1}$	0.05	0.20	0.002	0.008		
b	0.35	0.50	0.014	0.020		
c	0.18	0.27	0.007	0.011		
D	9.90	10.50	0.390	0.413		
E	5.10	5.45	0.201	0.215		
e	1.27		BSC	0.050		BSC
H_{E}	7.40	8.20	0.291	0.323		
L	0.50	0.85	0.020	0.033		
$\mathrm{~L}_{\mathrm{E}}$	1.10	1.50	0.043	0.059		
M	0°	10°	0°	10°		
Q_{1}	0.70	0.90	0.028	0.035		
Z	-	0.78	-	0.031		

Abstract

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore:
001-800-4422-3781

Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative

