D Flip Flop with Set and Reset

The MC10EP31 is a D flip flop with set and reset. The device is pin and functionally equivalent to the EL31 and LVEL31 devices. With AC performance much faster than the EL31 and LVEL31 devices, the EP31 is ideal for applications requiring the fastest AC performance available. Both set and reset inputs are asynchronous, level triggered signals. Data enters the master portion of the flip–flop when CLK is low and is transferred to the slave, and thus the outputs, upon a positive transition of the CLK.

- 275ps Typical Propagation Delay
- High Bandwidth to 3 Ghz Typical
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: 0V V_{CC} with $V_{EE} = -3.0V$ to -5.5V
- 75kΩ Internal Input Pulldown Resistors
- Q Output will default LOW with inputs open or at $V_{\mbox{\scriptsize EE}}$
- ESD Protection: >4KV HBM, >200V MM
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack. For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 75 devices

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

D SUFFIX CASE 751

MARKING DIAGRAM

*For additional information, see Application Note AND8002/D

PIN DESCRIPTION							
PIN	FUNCTION						
CLK ECL Clock Inputs							
Reset ECL Asynchronous Reset							
Set	ECL Asynchronous Set						
D	ECL Data Input						
Q, \overline{Q}	ECL Data Outputs						
VCC Positive Supply							
VEE	Negative, 0 Supply						

TRUTH TABLE								
D	SET RESET CLK Q							
L H X X X			Z Z X X X	L H L UNDEF				

Z = LOW to HIGH Transition

ORDERING INFORMATION

Device	Package	Shipping
MC10EP31D	SOIC	98 Units/Rail
MC10EP31DR2	SOIC	2500 Tape & Reel

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VEE	Power Supply ($V_{CC} = 0V$)	-6.0 to 0	VDC
VCC	Power Supply (V _{EE} = 0V)	6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative than V _{EE})	-6.0 to 0	VDC
VI	Input Voltage (V _{EE} = 0V, V _I not more positive than V _{CC})	6.0 to 0	VDC
l _{out}	Output Current Continuous Surge	50 100	mA
Т _А	Operating Temperature Range	-40 to +85	°C
T _{stg}	Storage Temperature	-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient) Still Air 500lfpm	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	41 to 44 \pm 5%	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C desired)	265	°C

* Maximum Ratings are those values beyond which damage to the device may occur.

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{EE} = -5.5V$ to -3.0V) (Note 3.)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	26	34	44	26	35	45	28	37	47	mA
VOH	Output HIGH Voltage (Note 2.)	-1135	-1060	-885	-1070	-945	-820	-1010	-885	-760	mV
VOL	Output LOW Voltage (Note 2.)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
VIH	Input HIGH Voltage Single Ended	-1210		-885	-1145		-820	-1085		-760	mV
VIL	Input LOW Voltage Single Ended	-1935		-1610	-1870		-1545	-1810		-1485	mV
ЧΗ	Input HIGH Current			150			150			150	μΑ
ΙL	Input LOW Current	0.5			0.5			0.5			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The i. V_{CC} = 0V, V_{EE} = V_{EEmin} to V_{EEmax}, all other pins floating.
2. All loading with 50 ohms to V_{CC}-2.0 volts.
3. Input and output parameters vary 1:1 with V_{CC}.

MC10EP31

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 4.)	26	34	44	26	35	45	28	37	47	mA
VOH	Output HIGH Voltage (Note 5.)	2165	2240	2415	2230	2355	2480	2290	2415	2540	mV
VOL	Output LOW Voltage (Note 5.)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
VIH	Input HIGH Voltage Single Ended	2090		2415	2155		2480	2215		2540	mV
VIL	Input LOW Voltage Single Ended	1365		1690	1430		1755	1490		1815	mV
IIН	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$) (Note 6.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

4. $V_{CC} = 3.3V$, $V_{EE} = 0V$, all other pins floating.

5. All loading with 50 ohms to V_{CC} -2.0 volts.

6. Input and output parameters vary 1:1 with V_{CC}.

DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{EE} = 0V$) (Note 9.)

			–40°C			25°C	_		85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 7.)	26	34	44	26	35	45	28	37	47	mA
VOH	Output HIGH Voltage (Note 8.)	3865	3940	4115	3930	4055	4180	3990	4115	4240	mV
VOL	Output LOW Voltage (Note 8.)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
VIH	Input HIGH Voltage Single Ended	3790		4115	3855		4180	3915		4240	mV
VIL	Input LOW Voltage Single Ended	3065		3390	3130		3455	3190		3515	mV
ЧΗ	Input HIGH Current			150			150			150	μΑ
Ι _Ι	Input LOW Current	0.5			0.5			0.5			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

7. $V_{CC} = 5.0V$, $V_{EE} = 0V$, all other pins floating.

8. All loading with 50 ohms to V_{CC} -2.0 volts.

9. Input and output parameters vary 1:1 with V_{CC} .

MC10EP31

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency (Note 10.)		3.0			3.0			3.0		GHz
^t PLH, ^t PHL	Propagation Delay to Output Differential CLK->Q, Q S, R->Q, Q	175 200	250 280	325 360	200 250	275 330	350 420	250 325	320 400	400 475	ps
^t RR	Set/Reset Recovery	225	150		200	140		185	130		ps
tS t _H	Setup Time Hold Time	150 150	50 50		150 150	50 50		150 150	50 50		ps
^t SKEW	Duty Cycle Skew (Note 11.) Skew Part–to–Part		TBD TBD			TBD TBD			TBD TBD		ps
^t PW	Minimum Pulse Width CLK, SET, RESET	550	450		550	450		550	450		ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
tr t _f	Output Rise/Fall Times $(20\% - 80\%)$ Q, \overline{Q}	50	120	180	60	130	200	70	150	220	ps

AC CHARACTERISTICS (V _{CC}	$= 0V; V_{EE} = -3.0V \text{ to } -5.5V)$	or $(V_{CC} = 3.0V \text{ to } 5.5V; V_{EE} = 0V)$
-------------------------------------	---	--

10. F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.
 11. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-06 **ISSUE T**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETER. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS									
DIM	MIN	MAX								
Α	1.35	1.75								
A1	0.10	0.25								
В	0.35	0.49								
С	0.19	0.25								
D	4.80	5.00								
E	3.80	4.00								
е	1.27	BSC								
Н	5.80	6.20								
h	0.25	0.50								
L	0.40	1.25								
θ	0 °	7°								

Notes

Notes

MC10EP31

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and idistributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada **Email:** ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.