8-Input Multiplexer with 3-State Outputs

The TTL/MSI SN74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Schottky Process for High Speed
- Multifunction Capability
- On-Chip Select Logic Decoding
- Inverting and Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

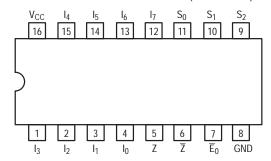
GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-2.6	mA
I _{OL}	Output Current – Low		·	24	mA

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

> LOW POWER SCHOTTKY

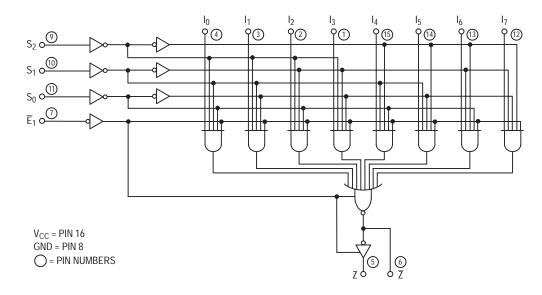


SOIC D SUFFIX CASE 751B

ORDERING INFORMATION

Device	Package	Shipping	
SN74LS251N	16 Pin DIP	2000 Units/Box	
SN74LS251D	16 Pin	2500/Tape & Reel	

CONNECTION DIAGRAM DIP (TOP VIEW)



		LOADING	(Note a)
PIN NAMES		HIGH	LOW
$\begin{array}{l} S_0 - S_2 \\ \overline{E}_0 \\ I_0 - I_7 \\ \overline{Z} \end{array}$	Select Inputs Output Enable (Active LOW) Inputs Multiplexer Inputs Multiplexer Output Complementary Multiplexer Output	0.5 U.L. 0.5 U.L. 0.5 U.L. 65 U.L. 65 U.L.	0.25 U.L. 0.25 U.L. 0.25 U.L. 15 U.L. 15 U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Output Enable input (\overline{E}_{O}) is active LOW. When it is activated, the logic function provided at the output is:

$$\begin{split} Z &= \overline{E}_O \cdot (I_0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot S_1 \cdot \overline{S}_2 + I_3 \cdot S_0 \cdot S_1 \cdot \overline{S}_2 + I_4 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot S_2 + I_5 \cdot S_0 \cdot \overline{S}_1 \cdot S_2 + I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2). \end{split}$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH TABLE

E ₀	S ₂	S ₁	S ₀	I ₀	I ₁	l ₂	l ₃	I ₄	l ₅	l ₆	I ₇	Z	Z
Н	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	(Z)	(Z)
L	L	L	L	L	Χ	Χ	Χ	Χ	Χ	X	X	Н	L
L	L	L	L	Н	Χ	Χ	Χ	Χ	Χ	X	Χ	L	Н
L	L	L	Н	Х	L	Χ	Χ	Χ	Χ	X	X	Н	L
L	L	L	Н	Х	Н	Χ	Χ	Χ	Χ	X	X	L	Н
L	L	Н	L	Х	Χ	L	Χ	Χ	Χ	Χ	X	Н	L
L	L	Н	L	Х	Χ	Н	Χ	Χ	Χ	X	X	L	Н
L	L	Н	Н	Х	Χ	Χ	L	Χ	Χ	X	X	Н	L
L	L	Н	Н	Х	Χ	Χ	Н	Χ	Χ	Χ	X	L	н
L	Н	L	L	Х	Χ	Χ	Χ	L	Χ	X	X	Н	L
L	Н	L	L	Х	Χ	Χ	Χ	Н	Χ	Χ	X	L	Н
L	Н	L	Н	Х	Χ	Χ	Χ	Χ	L	X	X	Н	L
L	Н	L	Н	Х	Χ	Χ	Χ	Χ	Н	Χ	X	L	Н
L	Н	Н	L	Х	Χ	Χ	Χ	Χ	Χ	L	X	Н	L
L	Н	Н	L	Х	Χ	Χ	Χ	Χ	Χ	Н	X	L	Н
L	Н	Н	Н	Х	Χ	Χ	Χ	Χ	Χ	Χ	L	Н	L
L	Н	Н	Н	Х	Χ	Χ	Χ	Χ	Χ	Χ	Н	L	н

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

⁽Z) = High impedance (Off)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Inpu All Inputs	t HIGH Voltage for	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Inpu All Inputs	t LOW Voltage for	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA	
V _{OH}	Output HIGH Voltage	2.4	3.1		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
.,	0		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$	
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 24 mA	$V_{IN} = V_{IL}$ or V_{IH} per Truth Table	
I _{OZH}	Output Off Current HIGH			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
I _{OZL}	Output Off Current LOW			-20	μΑ	V _{CC} = MAX, V _{OU}	_{IT} = 0.4 V	
	Innut HCH Current			20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
¹ıн	Input HIGH Current			0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
I _{IL}	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{OS}	Short Circuit Current (Note 1)	-30		-130	mA	V _{CC} = MAX		
laa	Power Supply Current			10	mA	$V_{CC} = MAX, V_{E} = 0 V$		
Icc	Power Supply Current			12	mA	$V_{CC} = MAX, V_{E} = 4.5 V$		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test	Conditions	
t _{PLH} t _{PHL}	Propagation Delay, Select to Z Output		20 21	33 33	ns	Figure 1		
t _{PLH} t _{PHL}	Propagation Delay, Select to Z Output		29 28	45 45	ns	Figure 2		
t _{PLH} t _{PHL}	Propagation Delay, Data to Z Output		10 9.0	15 15	ns	Figure 1	C _L = 15 pF,	
t _{PLH}	Propagation Delay, Data to Z Output		17 18	28 28	ns	Figures 2	$R_L = 2.0 \text{ k}\Omega$	
t _{PZH}	Output Enable Time to Z Output		17 24	27 40	ns	Figures 4, 5		
t _{PZH}	Output Enable Time to Z Output		30 26	45 40	ns	Figures 3, 5		
t _{PHZ}	Output Disable Time to Z Output		37 15	55 25	ns	Figures 3, 5	$C_L = 5.0 \text{ pF},$	
t _{PHZ} t _{PLZ}	Output Disable Time to Z Output		30 15	45 25	ns	Figures 4, 5	$R_L = 667 \text{ k}\Omega$	

3-STATE AC WAVEFORMS

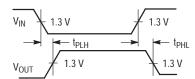


Figure 1.

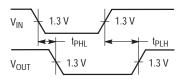


Figure 2.

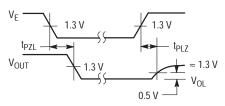


Figure 3.

0.5 V

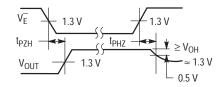
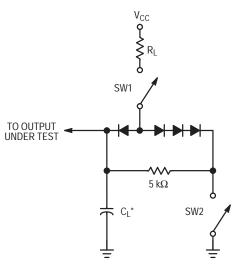



Figure 4.

AC LOAD CIRCUIT

 * Includes Jig and Probe Capacitance.

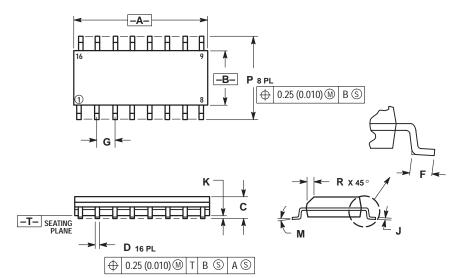

SWITCH POSITIONS

SYMBOL	SW1	SW2
t _{PZH}	Open	Closed
t _{PZL}	Closed	Open
t _{PLZ}	Closed	Closed
t _{PHZ}	Closed	Closed

Figure 5.

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015 0.02		0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295 0.305		7.50	7.74	
M	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 ISSUE J

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

ON Semiconductor and Wall are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5487-8345 Email: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.