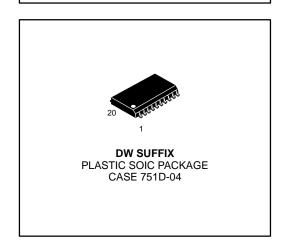

÷2/4, ÷4/6 Clock Generation Chip

The MC100LVEL39 is a low skew $\pm 2/4$, $\pm 4/6$ clock generation chip designed explicitly for low skew clock generation applications. The MC100EL39 is pin and functionally equivalent to the MC100LVEL39 but is specified for operation at the standard 100K ECL voltage supply. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended LVECL or, if positive power supplies are used, LVPECL input signal. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device (see Interfacing section of the ECLinPSTM Data Book DL140/D). If a single<u>-end</u>ed input is to be used, the V_{BB} output should be connected to the CLK input and bypassed to ground via a 0.01 μ F capacitor. The V_{BB} output is designed to act as the switching reference for the input of the LVEL39 under single-ended input conditions, as a result, this pin can only source/sink up to 0.5mA of current.


The common enable (EN) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple LVEL39s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one LVEL39, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\pm 2/4$ and the $\pm 4/6$ outputs of a single device.

- 50ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- 75kΩ Internal Input Pulldown Resistors
- >2000V ESD Protection
- Low Voltage VEE Range of -3.0 to -3.8V

MC100LVEL39 MC100EL39

PIN DESCRIPTION

PIN	FUNCTION
<u>CL</u> K	Diff Clock Inputs
EN	Sync Enable
MR	Master Reset
VBB	Reference Output
Q ₀ , Q ₁	Diff +2/4 Outputs
Q ₂ , Q ₃	Diff +4/6 Outputs
DIVSEL	Frequency Select Input

FUNCTION TABLE

CLK	EN	MR	FUNCTION
Z	L	L	Divide
ZZ	H	L	Hold Q _{0–3}
X	X	H	Reset Q _{0–3}

Z = Low-to-High Transition

ZZ = High-to-Low Transition

DIVSELa	Q ₀ , Q ₁ OUTPUTS
0 1	Divide by 2 Divide by 4
DIVSELb	Q ₂ , Q ₃ OUTPUTS

3/96

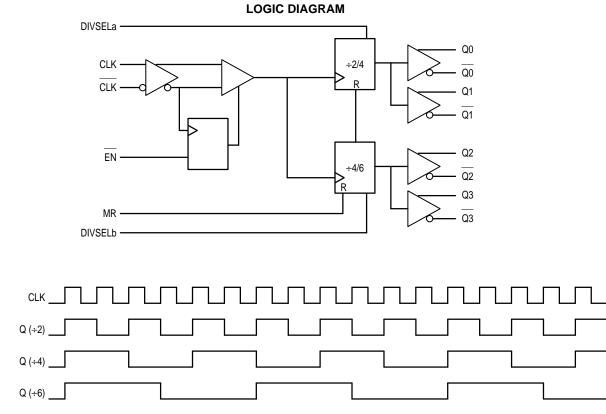


Figure 1. Timing Diagrams

MC100LVEL39 DC CHARACTERISTICS (V_{EE} = -3.8V to -3.0; V_{CC} = GND)

		–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
IEE	Power Supply Current		50	59		50	59		50	59		54	61	mA
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
IIH	Input High Current			150			150			150			150	μΑ

MC100LVEL39

			–40°C				0°C			25°C			85°C		
Symbol	Characte	eristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	Maximum Toggle Fre	equency	1000			1000			1000			1000			MHz
^t PLH ^t PHL	Propagation Delay to Output	$\begin{array}{c} CLK \rightarrow Q \; (Diff) \\ CLK \rightarrow Q \; (S.E.) \\ MR \rightarrow Q \end{array}$	760 710 600		960 1010 900	780 730 600		980 1030 900	800 750 610		1000 1050 910	850 800 630		1050 1100 930	ps
^t SKEW	Within-Device Skew ¹	Q ₀ – Q ₃			50			50			50			50	ps
	Part-to-Part	$Q_0 - Q_3$ (Diff)			200			200			200			200	
t _S	Setup Time	$\overline{\text{EN}} \to \overline{\text{CLK}}$ $\text{DIVSEL} \to \text{CLK}$	250 400			250 400			250 400			250 400			ps
tH	Hold Time	$\overline{CLK} \to \overline{EN}$ $CLK \to Div_Sel$	100 150			100 150			100 150			100 150			ps

MC100LVEL39 (continued) AC CHARACTERISTICS ($V_{EE} = -3.8V$ to -3.0; $V_{CC} = GND$)

		–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
V _{PP}	Minimum Input Swing CLK	250			250			250			250			mV
VCMR	Common Mode Range ³ $V_{PP} < 500 \text{mV}$ $V_{PP} \ge 500 \text{mV}$	-2.0 -1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	V
^t RR	Reset Recovery Time			100			100			100			100	ps
^t PW	Minimum Pulse Width CLK MR	500 700			500 700			500 700			500 700			ps
t _r , t _f	Output Rise/Fall Times Q (20% - 80%)	280		550	280		550	280		550	280		550	ps

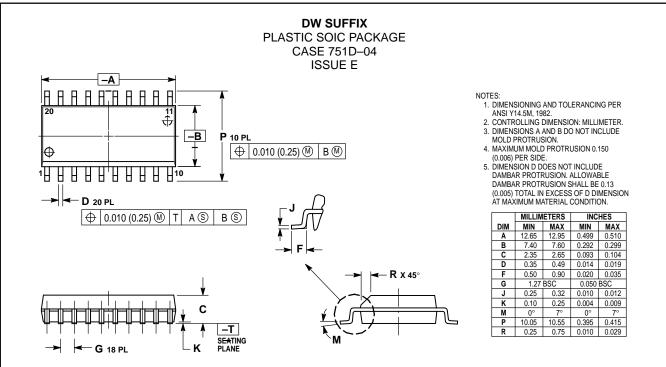
Skew is measured between outputs under identical transitions. 1.

2. Minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100mV. 3. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1V. The lower end of the CMR range varies 1:1 with V_{EE}. The numbers in the spec table assume a nominal V_{EE} = -3.3V. Note for PECL operation, the V_{CMR}(min) will be fixed at 3.3V – |V_{CMR}(min)|.

MC100EL39 **DC CHARACTERISTICS** ($V_{EE} = -4.2V$ to -5.46; $V_{CC} = GND$)

		–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
IEE	Power Supply Current		50	59		50	59		50	59		54	61	mA
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
Чн	Input High Current			150			150			150			150	μΑ

MC100EL39


AC CHARACTERISTICS ($V_{EE} = -4.2V$ to -5.46; $V_{CC} = GND$)

			–40°C			0°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency	1000			1000			1000			1000			MHz
^t PLH ^t PHL	$\begin{array}{lll} \mbox{Propagation Delay} & \mbox{CLK} \rightarrow \mbox{Q} \mbox{ (Diff} \\ \mbox{to Output} & \mbox{CLK} \rightarrow \mbox{Q} \mbox{ (S.E.} \\ & \mbox{MR} \rightarrow \mbox{Q} \end{array}$	710		960 1010 900	780 730 600		980 1030 900	800 750 610		1000 1050 910	850 800 630		1050 1100 930	ps
^t SKEW	Within-Device Skew ¹ Q ₀ – Q ₃			50			50			50			50	ps
	Part-to-Part $Q_0 - Q_3$ (Diff			200			200			200			200	
tS	$\begin{array}{cc} \text{Setup Time} & \overline{\text{EN}} \rightarrow \overline{\text{CLF}} \\ & \text{DIVSEL} \rightarrow \overline{\text{CLF}} \end{array}$				250 400			250 400			250 400			ps
^t H	$\begin{array}{c} \mbox{Hold Time} & \mbox{CLK} \rightarrow \mbox{EN} \\ \mbox{CLK} \rightarrow \mbox{Div}_{-} \mbox{Se} \end{array}$				100 150			100 150			100 150			ps
V _{PP}	Minimum Input Swing CL	250			250			250			250			mV
VCMR	Common Mode Range ³ Vpp < 500m\ Vpp ≥ 500m\			-0.4 -0.4	-3.3 -3.1		-0.4 -0.4	-3.3 -3.1		-0.4 -0.4	-3.3 -3.1		-0.4 -0.4	V
^t RR	Reset Recovery Time			100			100			100			100	ps
^t PW	Minimum Pulse Width CLF				500 700			500 700			500 700			ps
t _r , t _f	Output Rise/Fall Times Q (20% - 80%	280		550	280		550	280		550	280		550	ps

1. Skew is measured between outputs under identical transitions.

 Minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100mV.
 The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1V. The lower end of the CMR range varies 1:1 with V_{EE}. The numbers in the spec table assume a nominal V_{EE} = -4.5V. Note for PECL operation, the V_{CMR}(min) will be fixed at 5.0V - |V_{CMR}(min)|.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *O* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

 \Diamond

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

