Monostable Multivibrator

The MC10198 is a retriggerable monostable multivibrator. Two enable inputs permit triggering on any combination of positive or negative edges as shown in the accompanying table. The trigger input is buffered by Schmitt triggers making it insensitive to input rise and fall times.

The pulse width is controlled by an external capacitor and resistor. The resistor sets a current which is the linear discharge rate of the capacitor. Also, the pulse width can be controlled by an external current source or voltage (see applications information).

For high-speed response with minimum delay, a hi-speed input is also provided. This input bypasses the internal Schmitt triggers and the output responds within 2 nanoseconds typically.

Output logic and threshold levels are standard MECL 10,000. Test conditions are per Table 2. Each "Precondition" referred to in Table 2 is per the sequence of Table 1.

$$
\begin{aligned}
\mathrm{PD}_{\mathrm{D}}= & 415 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 4.0 \mathrm{~ns} \text { typ Trigger Inpt to } \mathrm{Q} \\
& 2.0 \text { ns typ Hi-Speed Input to } \mathrm{Q}
\end{aligned}
$$

Min Timing Pulse Width
Max Timing Pulse Width
Min Trigger Pulse Width
Min Hi-Speed
Trigger Pulse Width
Enable Setup Time
Enable Hold Time

PW $_{\text {Qmin }}$	$10 \mathrm{~ns} \mathrm{typ}{ }^{1}$
PW $_{\text {Qmax }}$	$>10 \mathrm{~ms} \mathrm{typ}{ }^{2}$
PW $_{\top}$	2.0 ns typ
PW WS	3.0 ns typ
t $_{\text {set }}$	1.0 ns typ
thold	1.0 ns typ

${ }^{1} \mathrm{C}_{\text {Ext }}=0$ (Pin 4 open), $\mathrm{R}_{\mathrm{Ext}}=0$ (Pin 6 to VEE)
$2 \mathrm{C}_{\mathrm{Ext}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{Ext}}=2.7 \mathrm{k} \Omega$

LOGIC DIAGRAM

MC10198

DIP
PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11 of the Motorola MECL Data Book (DL122/D).

TRUTH TABLE

INPUT		OUTPUT
$\bar{E}_{\text {Pos }}$	$\bar{E}_{\text {Neg }}$	
L	L	Triggers on both positive \& negative input slopes
L	H	Triggers on positive input slope
H	L	Triggers on negative input slope
H	H	Trigger is disabled

TABLE 1 - PRECONDITION SEQUENCE

1. Att=0 a.) Apply $V_{I H m a x}$ to $\operatorname{Pin} 5$ and 10.
b.) Apply VILmin to Pin 15.
c.) Ground Pin 4.
2. Att $\geq 10 \mathrm{~ns}$ a.) Open Pin 1 .
b.) Apply -3.0 Vdc to Pin 4.

Hold these conditions for $\geq 10 \mathrm{~ns}$.
3. Return Pin 4 to Ground and perform test as indicated in Table 2.

TABLE 2 - CONDITIONS FOR TESTING OUTPUT LEVELS
(See Table 1 for Precondition Sequence)

Pins 1, $16=V_{C C}=$ Ground
Pins 6, $8=\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$
Outputs loaded 50Ω to -2.0 Vdc

	Pin Conditions			
Test P.U.T.	5	10	13	15
Precondition				
$\mathrm{V}_{\mathrm{OH}} 2$			$\mathrm{V}_{\mathrm{IL} \text { min }}$	
$\mathrm{V}_{\mathrm{OH}} 3$			P1	
Precondition				
$\mathrm{V}_{\mathrm{OL}} 3$			$\mathrm{V}_{\text {IL }}$ min	
$\mathrm{V}_{\mathrm{OL}} 2$			P1	
Precondition				
$\mathrm{V}_{\text {OHA }} 2$				$V_{\text {ILA max }}$
VOHA 3				$V_{\text {IHA }}$ min
Precondition				
$V_{\text {OHA }} 2$			$\mathrm{V}_{\text {IL }}$ min	
VOHA 3			P3	
Precondition				
VOHA 2			P2	
V 3			P3	
Precondition				
VOHA 2		$\mathrm{V}_{\text {IH }}$ max	P2	
VOHA 3		$\mathrm{V}_{\text {IH max }}$	P3	
Precondition				
VOHA 2		$\mathrm{V}_{\text {IH max }}$	P1	
VOHA 3		$\mathrm{V}_{\text {IH }}$ max	P1	

Test P.U.T.	Pin Conditions			
	5	10	13	15
Precondition				
$V_{\text {OHA }} 2$		$\mathrm{V}_{\text {IHA }}$ min	P1	
$\mathrm{V}_{\text {OHA }} 3$		VILA max	P1	
Precondition				
VOLA 3				$V_{\text {ILA max }}$
$V_{\text {OLA }} 2$				$V_{\text {IHA }}$ min
Precondition \quad 河				
VOLA 2			$V_{\text {IL }}$ min	
VOLA 3			$V_{\text {IL }}$ min	
Precondition $\quad \square$				
$V_{\text {OLA }} 3$			P2	
$V_{\text {OLA }} 2$			P3	
Precondition				
VOLA 3		$\mathrm{V}_{\text {IH }}$ max	P2	
VOLA 2		$\mathrm{V}_{\text {IH }}$ max	P3	
Precondition				
VOLA 3	$V_{\text {IHA }}$ min	$\mathrm{V}_{\text {IH }}$ max	P1	
VOLA 2	V ILA max	$\mathrm{V}_{\mathrm{IH} \text { max }}$	P1	
Precondition				
V OLA 3	$\mathrm{V}_{\text {IH }}$ max	$\mathrm{V}_{\text {IHA }}$ min	P1	
VOLA 2	$\mathrm{V}_{\text {IH }}$ max	V ILA max	P1	

MC10198

ELECTRICAL CHARACTERISTICS

1. The monostable is in the timing mode at the time of this test.
2. CEXT $=0$ (Pin 4 Open); REXT $=0$ (Pin 6 tied to $\mathrm{V}_{E E}$).
3. $\mathrm{CEXT}=10 \mu \mathrm{~F}(\mathrm{Pin})$; REXT $=2.7 \mathrm{k}(\operatorname{Pin} 6)$.
4.

ELECTRICAL CHARACTERISTICS (continued)

@ Test Temperature			TEST VOLTAGE VALUES (Volts)					$\left(V_{C c}\right)$Gnd
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	VEE	
		$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	-0.890	-1.890	-1.205	-1.500	-5.2	
			-0.810	-1.850	-1.105	-1.475	-5.2	
			-0.700	-1.825	-1.035	-1.440	-5.2	
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	$V_{\text {ILAmax }}$	V_{EE}	
Power Supply Drain Current	IE	8					6, 8	1, 4, 16
Input Current	linH	$\begin{gathered} 5,10 \\ 13 \\ 15 \end{gathered}$	$\begin{gathered} 5,10 \\ 13 \\ 15 \end{gathered}$				$\begin{aligned} & 6,8 \\ & 6,8 \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,4,16 \\ & 1,4,16 \\ & 1,4,16 \end{aligned}$
	1 inL	5		5			6, 8	1, 4, 16
Output Voltage Logic 1	V_{OH}	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	13 (4.)	13			$\begin{aligned} & 6,8 \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,4,16 \\ & 1,4,16 \end{aligned}$
Output Voltage Logic 0	V_{OL}	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	13 (4.)	13			$\begin{aligned} & 6,8 \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,4,16 \\ & 1,4,16 \end{aligned}$
Threshold Voltage Logic 1	V OHA	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			15	15	$\begin{aligned} & 6,8 \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,16,4 \\ & 1,16,4 \end{aligned}$
Threshold Voltage Logic 0	$\mathrm{V}_{\text {OLA }}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			15	15	$\begin{aligned} & 6,8 \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,16,4 \\ & 1,16,4 \end{aligned}$
Switching Times (50 Load)			+1.11V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Trigger Input	$\begin{aligned} & \mathrm{t} \mathrm{~T}_{+} \mathrm{Q}+ \\ & \mathrm{t}+\mathrm{T}^{-}+ \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 6,8 \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,16,4 \\ & 1,16,4 \end{aligned}$
High Speed Trigger Input	${ }_{\text {t }}^{+} \mathrm{S}+\mathrm{Q}+$	3			15	3	6, 8	1, 16, 4
Minimum Timing Pulse Width	$\mathrm{PW}_{\text {Qmin }}$	3				Note 2.	6, 8	1, 16, 4
Maximum Timing Pulse Width	PW Qmax	3				Note 3.	6, 8	1, 16, 4
Minimum Trigger Pulse Width	PW_{T}	3			13	3	6, 8	1, 16, 4
Minimum Hi-Spd Trigger Pulse Width	PWHS	3			15	3	6, 8	1, 16, 4
Rise Time (20 to 80\%)		3					6, 8	1,16, 4
Fall Time (20 to 80\%)		3					6, 8	1, 16, 4
Enable Setup Time	$\mathrm{t}_{\text {setup }}(\mathrm{E})$	3			5	3	6, 8	1, 16, 4
Enable Hold Time	thold (E)	3			5	3	6, 8	1,16, 4

1. The monostable is in the timing mode at the time of this test.
2. $\mathrm{C}_{E X T}=0$ (Pin 4 Open); REXT $=0$ (Pin 6 tied to $\mathrm{V}_{E E}$).
3. $\mathrm{C}_{E X T}=10 \mu \mathrm{~F}(\mathrm{Pin}) ; \mathrm{R}_{\mathrm{EXT}}=2.7 \mathrm{k}(\operatorname{Pin} 6)$.
4. $\square_{\mathrm{P} 1}-\mathrm{V}_{\mathrm{IH} \max }$

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a $50-\mathrm{ohm}$ resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ $25^{\circ} \mathrm{C}$

50-ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be $<1 / 4$ inch from $\mathrm{TP}_{\text {in }}$ to input pin and $\mathrm{TP}_{\text {out }}$ to output pin.

Input Pulse

$$
t+=t-=2.0 \pm 0.2 \mathrm{~ns}
$$

(20 to 80\%)

Unused outputs are tied to a 50-ohm resistor to ground.

APPLICATIONS INFORMATION

Circuit Operation:

1.PULSE WIDTH TIMING - The pulse width is determined by the external resistor and capacitor. The MC10198 also has an internal resistor (nominally 284 ohms) that can be used in series with RExt. Pin 7, the external pulse width control, is a constant voltage node (-3.60 V nominally). A resistance connected in series from this node to V_{EE} sets a constant timing current IT. This current determines the discharge rate of the capacitor:

$$
\mathrm{IT}=\mathrm{C}_{\mathrm{Ext}} \quad \frac{\Delta \mathrm{~V}}{\Delta \mathrm{~T}}
$$

where
$\Delta \mathrm{T}=$ pulse width
$\Delta \mathrm{V}=1.9 \mathrm{~V}$ change in capacitor voltage
Then:

$$
\Delta \mathrm{T}=\mathrm{C}_{\mathrm{Ext}} \frac{1.9 \mathrm{~V}}{\mathrm{I}_{\mathrm{T}}}
$$

If $R_{E x t}+R_{\text {Int }}$ are in series to $V_{E E}$:
$\mathrm{I}_{\mathrm{T}}=[(-3.60 \mathrm{~V})-(-5.2 \mathrm{~V})] \div\left[\mathrm{R}_{\mathrm{Ext}}+284 \Omega\right]$
$\mathrm{IT}=1.6 \mathrm{~V} /\left(\mathrm{R}_{\mathrm{Ext}}+284\right)$
The timing equation becomes:
$\Delta \mathrm{T}=\left[\left(\mathrm{C}_{\mathrm{Ext}}\right)(1.9 \mathrm{~V})\right] \div\left[1.6 \mathrm{~V} /\left(\mathrm{R}_{\mathrm{Ext}}+284\right)\right]$
$\Delta T=C_{E x t}\left(R_{E x t}+284\right) 1.19$
where $\Delta \mathrm{T}=$ Sec
$\mathrm{R}_{\text {Ext }}=\mathrm{Ohms}$
CExt = Farads

FIGURE 1 -

Figure 2 shows typical curves for pulse width versus $\mathrm{C}_{\text {Ext }}$ and $\mathrm{R}_{\text {Ext }}$ (total resistance includes $\mathrm{R}_{\text {Int }}$). Any low leakage capacitor can be used and $R_{\text {Ext }}$ can vary from 0 to 16 k -ohms.
2.TRIGGERING -The $\overline{\mathrm{E}}_{\text {pos }}$ and $\overline{\mathrm{E}}_{\text {Neg }}$ inputs control the trigger input. The MC10198 can be programmed to trigger on the positive edge, negative edge, or both. Also, the trigger input can be totally disabled. The truth table is shown on the first page of the data sheet.

The device is totally retriggerable. However, as duty cycle approaches 100%, pulse width jitter can occur due to the recovery time of the circuit. Recovery time is basically dependent on capacitance CExtFigure 3 shows typical recovery time versus capacitance at $\mathrm{I} \top=5 \mathrm{~mA}$.

FIGURE 2 - TIMING PULSE WIDTH versus CExt and RExt

FIGURE 3 - RECOVERY TIME versus CExt @ $\mathbf{I T}_{\mathrm{T}}=5 \mathrm{~mA}$

3.HI-SPEED INPUT - This input is used for stretching very narrow pulses with minimum delay between the output pulse and the trigger pulse. The trigger input should be disabled when using the high-speed input. The MC10198 triggers on the rising edge, using this input, and input pulse width should narrow, typically less than 10 nanoseconds.

USAGE RULES:

1.Capacitor lead lengths should be kept very short to minimize ringing due to fast recovery rise times.
2.The E inputs should not be tied to ground to establish a high logic level. A resistor divider or diode can be used to establish a -0.7 to -0.9 voltage level.
3.For optimum temperature stability; 0.5 mA is the best timing current IT . The device is designed to have a constant voltage at the EXTERNAL PULSE WIDTH CONTROL over temperature at this current value.
4.Pulse Width modulation can be attained with the EXTERNAL PULSE WIDTH CONTROL. The timing current can be altered to vary the pulse width. Two schemes are:
a. The internal resistor is not used. A dependent current source is used to set the timing current as shown in Figure 4. A graph of pulse width versus timing current ($C_{E x t}=13 \mathrm{pF}$) is shown in Figure 5.

FIGURE 5 - PULSE WIDTH versus IT @ CExt = 13 pF

b. A control voltage can also be used to vary the pulse width using an additional resistor (Figure 6). The current ($\mathrm{I} T+\mathrm{I} \mathrm{C}$) is set by the voltage drop across R Int + RExt. The control current IC modifies I_{T} and alters the pulse width. Current I_{C} should never force I_{\top} to zero. RC typically $1 \mathrm{k} \Omega$.

FIGURE 4 -

FIGURE 6 -
(
5.The MC10198 can be made non-retriggerable. The Q output is fed back to disable the trigger input during the triggered state (Logic Diagram). Figure 7 shows a positive triggered configuration; a similar configuration can be made for negative triggering.

FIGURE 7 -

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

