UF100G THRU UF108G

GLASS PASSIVATED JUNCTION ULTRAFAST SWITCHING RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 1.0 Ampere

FEATURES

Plastic package has Underwriters Laboratory
 Flammability Classification 94V-O Utilizing
 Flame Retardant Epoxy Molding Compound

- Glass passivated junction in DO-41 package
- 1.0 ampere operation at T_A=55 ¢J with no thermal runaway
- Exceeds environmental standards of MIL-S-19500/228
- Ultra Fast switching for high efficiency

MECHANICAL DATA

Case: Molded plastic, DO-41


Terminals: axial leads, solderable per MIL-STD-202,

Method 208

Polarity: Band denotes cathode

Mounting Position: Any

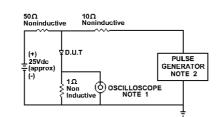
Weight: 0.013 ounce, 0.3 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 [¢]J ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.


enigle phase, han wave, conz, resistive of madelive lee		UF101G	UF102G	UF104G	UF106G	UF108G	LIMITS
Peak Reverse Voltage, Repetitive; V _{RM} :	50	100	200	400	600	800	V
Maximum RMS Voltage	35	70	140	280	420	560	V
DC Reverse Voltage; V _R	50	100	200	400	600	800	V
Average Forward Current, Io @ T _A =55 ¢J 3/8" lead	1.0						Α
length, 60 Hz, resistive or inductive load							
Peak Forward Surge Current, I _{FM} (surge) 8.3msec.	30						Α
single half sine wave superimposed on rated							
load(JECEC method)							
Maximum Forward Voltage VF @ 1.0A, 25 ¢J	1.00 1.3			1.30	1.70		V
Maximum Reverse Current, @ Rated T _J =25 ¢J	10.0						£g A
Reverse Voltage T _J =100 ¢J	150						£g A
Typical Junction capacitance (Note 1) CJ	17						₽F
Typical Junction Resistance (Note 2) R £KJA	60						¢J/W
Reverse Recovery Time	50	50	50	50	100	100	ns
I_F =.5A, I_R =1A, I_{rr} =.25A							
Operating and Storage Temperature Range	-55 to +150						¢J

NOTES:

- 1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC
- 2. Thermal resistance from junction to ambient and from junction to lead length at 0.375"(9.5mm) P.C.B. mounted

RATING AND CHARACTERISTIC CURVES UF100G THRU UF108G

NOTE:1.Rise Time = 7ns max. Input Impedance = 1 megohm. 22pF 2.Rise Time = 10ns max.

Source Impedance = 50 Ohms

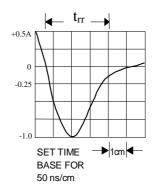


Fig. 1-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

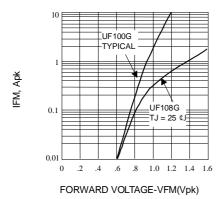


Fig. 2-FORWARD CHARACTERISTICS

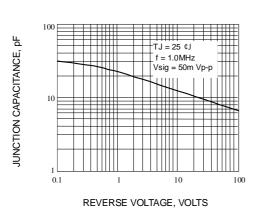


Fig. 4-TYPICAL JUNCTION CAPACITANCE

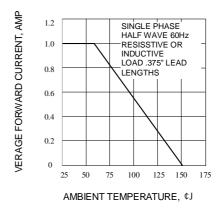


Fig. 3-FORWARD CURRENT DERATING CURVE

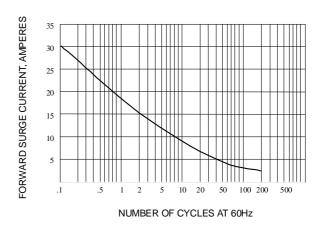


Fig. 5-PEAK FORWARD SURGE CURRENT

