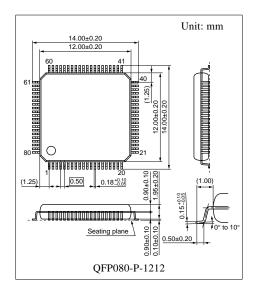
AN8725FH

Semiconductor laser power control IC

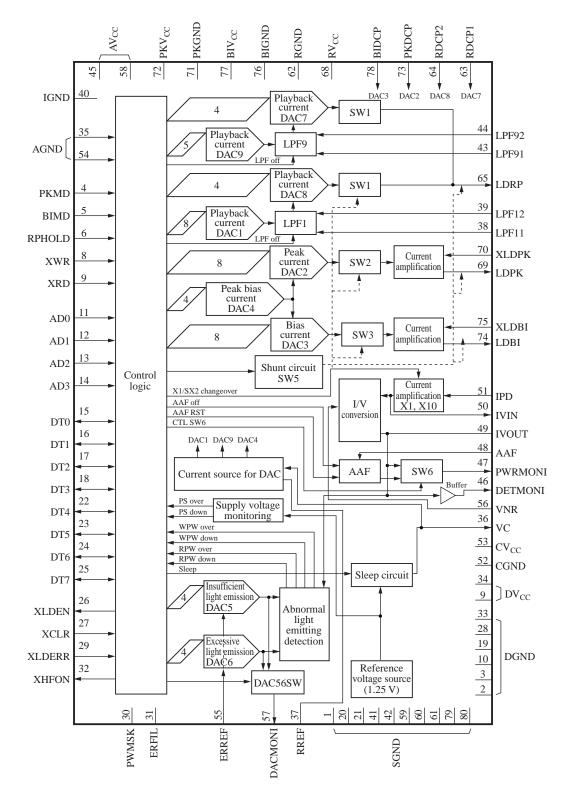
Overview

The AN8725FH is a laser driver IC that can set a laser emitting level to a maximum precision in recording and playback of an optical recording equipment such as PD, and can modulate a laser light in tune with the external signal.

Features


- Digital setting of playback current, peak current, bias current and abnormal light emitting level
- Peak current and bias current can be modulated by the external signal.
- Driving current set-up (digital set-up) For playback: 8-bit + 4-bit (0 mA to 80 mA) 5-bit + 4-bit (0 mA to 150 mA)

For peak: 4-bit + 8-bit (0 mA to 150 mA) For bias: 4-bit + 8-bit (0 mA to 150 mA)


- Laser output light monitoring circuit built-in
- Abnormal light emitting detecting function built-in: Possible to set up excessive and insufficient light emitting levels with 4-bit DAC for playback and recording, respectively.
- Supply voltage abnormality detection: Voltage down (3.9 V or less), voltage up (6.1 V or more)

Applications

• Optical disk drive

Block Diagram

Pin Descriptions

Note) Description on notations of "Category" in the following list:

- IN : Input pin
- I/O $\,$: Input/output pin (pull-down with 100 k Ω) IND : Input pin (pull-down with 100 k Ω) PS : Power supply/GND pin
- INU : Input pin (pull-up with 100 k Ω)
- OUT: Output pin
- A: Analog function

D: Digital function

MSC: Parts connecting pin, etc.

	log function			D. Digital function		
Pin No.	Symbol	Cate	gory	Description		
1	SGND	PS	D	Pin connected to the chip substrate. Must be used in the same potential as other GND pins.		
2	DGND	PS	D	GND pin exclusive for a logic circuit.		
3	DGND	PS	D	Must be used in the same potential as other GND pins.		
4	PKMD	IND	D	Peak current modulation signal input pin. In high-level, the current set up with DAC2 is superimposed on LD.		
5	BIMD	IND	D	Bias current modulation signal input pin. In high-level, the current set up with DAC3 is superimposed on LD.		
6	RPHOLD	IND	D	Record gate signal input pin. Inputs a low-level in playback and a high-level in recording. Switches an amp. of light monitoring signal, abnormally emitted light detection level and on/off of HF module.		
7	XWR	INU	D	Register writing signal pin. Selects a register specified by address in a fall edge and writes a bus data on the register of the address specified in the rise edge.		
8	XRD	INU	D	Register read-out signal pin. Register data of the address specified in low appears on the bus.		
9	DV _{CC}	PS	D	Power supply pin exclusive for a logic circuit. Must be used in the same potential as other power supply pins.		
10	DGND	PS	D	GND pin exclusive for a logic circuit. Must be used in the same potential as other GND pins.		
11	AD0	IND	D	4-bit address pin for registers.		
12	AD1	IND	D	Selects the register to be accessed.		
13	AD2	IND	D			
14	AD3	IND	D			
15	DT0	I/O	D	Data I/O 8-bit bus pin.		
16	DT1	I/O	D	The bus to set the data to be written on a register and to read out the da		
17	DT2	I/O	D	of a register.		
18	DT3	I/O	D	1		
19	DGND	PS	D	GND pin exclusive for a logic circuit. Must be used in the same potential as other GND pins.		

Pin No.	Symbol	Cate	gory	Description
20	SGND	PS	D	Pin connected to the chip substrate.
21	SGND	PS	D	Must be used in the same potential as other GND pins.
22	DT 4	I/O	D	Data I/O 8-bit bus pin.
23	DT 5	I/O	D	The bus to set the data to be written on a register and to read out the data
24	DT 6	I/O	D	of a register.
25	DT 7	I/O	D	
26	XLDEN	INU	D	LD enable input pin. In a high-level or open mode, LD becomes off and open. This state is suited to check the LD characteristics in keeping a connection to the IC. At the time power off, both ends of LD are short-circuited by the IC for protection. In the low-level, it returns to a normal operation.
27	XCLR	IND	D	Clear signal input pin. Sets an LDDENB register to "0" in the low-level and presets the status of each DAC and each switch to an initial state as defined separately. But six registers for an abnormal detection are not cleared. In this state, each output of a current amplification 1, 2, 3 are in the off state and a shunt circuit becomes on to continue to protect LD. Setting this pin to the high-level and the LDDENB register to "1", it returns to a normal operation.
28	DGND	PS	D	GND pin exclusive for a logic circuit. Must be used in the same potential as other GND pins.
29	XLDERR	OUT	D	Laser abnormality detection output pin. When a supply voltage or a laser light emission exceeds a fixed range, it goes to low-level. A supply voltage abnormality is detected for the volt- age drop (3.9 V or less) or voltage rise (6.1 V or more). And an abnormal light emission is detected for an excessive or weaker light emission set up by 4-bit DAC5 and DAC6. This abnormality detection is latched so as to prevent it from being reset until ERRCLR register is set to "1". Further, each DAC output of a playback current, a peak current and a bias current can be set to off, a shunt circuit be set to on and LD between anode and GND be short-circuited by 100 Ω so that LD can be protected. This protection function is latched to keep it from being reset until ERRCLR is set to "1". Selection of either operation or non-operation for this opera- tion can be made by an STPMSK register.
30	PWMSK	MSC	D	The pin to set up the mask time for a transitional response output that comes out at switching a detection level of excessive or insufficient light emission by RPHOLD. Set a mask time by an external capacitor between PWMSK and DGND and the resistor (10 k Ω) inside the IC. This pin is for a schmitt-trigger input.

Pin No.	Symbol	Cate	gory	Description			
31	ERFIL	MSC	D	Filter setting pin to avoid a detection error of laser abnormality caused by noise. Connect an external capacitor between ERFIL and DGND, and set a filter together with a resistor (10 k Ω) inside the IC. This pin is for schmitt-trigger input.			
32	XHFON	OUT	D	HF module on/off control signal output pin. High corresponds to off and low to on.			
33	DGND	PS	D	GND pin exclusive to a logic circuit. Must be used in the same potential as other GND pins.			
34	DV _{CC}	PS	D	Power supply pin exclusive to a logic circuit. Must be used in the same potential as other power supply pins.			
35	AGND	PS	A	GND pin exclusive to a analog circuit. Must be used in the same potential as other GND pins.			
36	VC	MSC	А	Output pin for reference voltage (1.25 V). Connects a capacitor C between this pin and AGND for de-coupling.			
37	RREF	MSC	A	Reference resistor connecting pin to determine an output current for each DAC. Connect a resistor of 10 k Ω between RREF and AGND.			
38	LPF11	MSC	Α	LPF characteristic setting pin for DAC1 and DAC8.			
39	LPF12	MSC	А	Connect an external resistor between LPF11 and LPF12, and then capacitor between LPF12 and IGND to set up a cutoff frequency.			
40	IGND	PS	A	GND pin for playback power supply setting DAC1, DAC9 and disturbance reduction LPF.Must be used in the same potential as other GND pins.			
41	SGND	PS	D	Pin connected to the chip substrate.			
42	SGND	PS	D	Must be used in the same potential as other GND pins.			
43	LPF91	MSC	А	LPF characteristic setting pin for DAC9 and DAC7.			
44	LPF92	MSC	A	Connect an external resistor between LPF91 and LPF92 and then capacitor between LPF92 and IGND to set a cutoff frequency.			
45	AV _{CC}	PS	А	Power supply pin for an analog circuit, a reference supply voltage circuit, et Must be used in the same potential as other power supply pins.			
46	DETMONI	OUT	A	Pin to monitor a signal for detecting abnormally emitted light. In a playback mode, the signal output is five times that in recording (ten times is posisible by a register setting). Has offset to VNR due to being outputted through a buffer of transistors.			
47	PWRMONI	OUT	A	Laser emitting light monitor signal. In a low-level of RPHOLD, the amplifier output has 10 times gain compared with recording, and is equipped with AFF.			

Pin No.	Symbol	Cate	gory	Description
48	AAF	MSC	А	AAF characteristic setting pin for optical monitor circuit. Connect an external resistor, capacitor between AAF and IVOUT and set up a cutoff frequency.
49	IVOUT	OUT	А	I to V conversion signal output pin. Connect an external variable resistor between IVIN and IVOUT.
50	IVIN	MSC	А	I to V conversion resistor connection pin. Connect an external variable resistor between IVIN and IVOUT.
51	IPD	MSC	A	 Pin photo diode (PD) connection pin. Connect a pin photo diode for detecting a semiconductor laser emitting light. Connect anode to this pin. Applicable to a source-type PD which has a typical value of 40 μA to 160 μA output in object lens output power of 1 mW.
52	CGND	PS	А	GND pin in an optical monitor circuit. Must be used in the same potential as other GND pins.
53	CV _{CC}	PS	А	Power supply pin in an optical monitor circuit. Must be used in the same potential as other power supply pins.
54	AGND	PS	А	GND pin exclusive to a analog circuit. Must be used in the same potential as other GND pins.
55	ERREF	IN	A	Abnormally emitting light detecting range setting pin. Sets a full scale voltage of DAC5 and DAC6. A setting range is VNR or more and input range of an external ADC or less.
56	VNR	IN	А	Reference level input pin for PWRMONI output. Input a reference voltage of 1.25 V of an external ADC.
57	DACMONI	OUT	А	DAC5, DAC6 monitor pin. DAC5 voltage is outputted when DAC56 SW register is low, DAC6 voltage is outputted when DAC6 voltage is high.
58	AV _{CC}	PS	А	Power supply pin for an analog circuit, a reference supply voltage circuit, etc. Must be used in the same potential as other power supply pins.
59	SGND	PS	D	Pin connected to the chip substrate.
60	SGND	PS	D	Must be used in the same potential as other GND pins.
61	SGND	PS	D	
62	RGND	PS	А	GND pin for the lead current setting DAC7 and DAC8. Must be used in the same potential as other GND pins.
63	RDCP1	MSC	A	Pin to connect a de-coupling capacitor to protect the output current of DAC7, the read current setting circuit, from disturbance by a switching noise such as peak current. (Connects a capacitor between RDCP1 and RGND.)

Pin No.	Symbol	Cate	gory	Description
64	RDCP2	MSC	A	Pin to connect a de-coupling capacitor to protect the output current of DAC7, the read current setting circuit, from disturbance by a switching noise such as peak current. (Connects a capacitor between RDCP2 and RGND.)
65	LDRP	OUT	A	Source type read current (DAC1, DAC7, DAC8, DAC9) output pin. Possible to set up the range of 0 mA to 150 mA in the precision of 8-bit + 4-bit + 5-bit + 4-bit. Output voltage range is 1.0 V to 3.5 V.
66	N.C.	_		N.C. pin.
67	N.C.	-	—	Open the pin or connect to GND.
68	RV _{CC}	PS	A	Power supply pin for read current setting DAC7, DAC8. Consumes approximately a quarter of the necessary read current. Must be used in the same potential as other power supply pins.
69	LDPK	OUT	А	Source-type peak current (DAC2) output pin. Possible to set the range of 0 mA to 150 mA in the accuracy of 8-bit. The output voltage range is 1.0 V to 3.2 V.
70	XLDPK	IN	A	Sink-type peak current output pin. Approximately three fourths of LDRK output current are outputted from this pin.
71	PKGND	PS	А	GND pin of DAC2 in the peak current setting circuit. Must be used in the same potential as other GND pins.
72	PKV _{CC}	PS	A	DAC2 power supply pin in the peak current setting circuit. Consumes approximately a quarter of the setting current. Must be used in the same potential as other power supply pins.
73	PKDCP	MSC	A	Pin to connect a de-coupling capacitor to avoid the output current disturbance, which is caused by a switching noise such as peak current, in peak current setting circuit DAC2. (Connects a capacitor between PKDCP and PKGND.)
74	LDBI	OUT	A	Source-type bias current (DAC3) output pin. Possible to set the range of 0 mA to 150 mA in the accuracy of 8-bit. Output voltage range is 1.0 V to 3.2 V.
75	XLDBI	IN	A	Sink-type peak current output pin. Approximately three fourths of LDBI output current are outputted from this pin.
76	BIGND	PS	А	GND pin of a bias current setting circuit DAC3. Must be used in the same potential as other GND pins.
77	BIV _{CC}	PS	А	Power supply pin of a bias current setting circuit DAC3. Consumes approximately one fourth of a setting current. Must be used in the same potential as other power supply pins.

Pin No.	Symbol	Category		Description
78	BIDCP	MSC	A	Pin to connect a de-coupling capacitor to avoid the output current disturbance, which is caused by a switching noise such as bias current, of a bias current setting circuit DAC3. (Connects a capacitor between BIDCP and BIGND.)
79	SGND	PS	D	Pin connected to the chip substrate.
80	SGND	PS	D	Must be used in the same potential as other GND pins.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	7.0	V
Input voltage	V _{IN}	-0.4 to V _{CC} +0.4	V
Outoput voltage	V _{OUT}	-0.4 to V _{CC} +0.4	V
Parts connecting pin voltage	V _{MSC}	– 0.4 to V _{CC} +0.4	V
Supply current	I _{CC}	80	mA
Pin current	I _{PIN}	-100 to +100	mA
Power dissipation *2	P _D	600	mW
Operating ambient temperature *1	T _{opr}	-20 to +75	°C
Storage temperature *1	T _{stg}	-55 to +150	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*2: The power dissipation shown is for the IC package in single unit at $T_a = 75^{\circ}C$.

Refer to "■ Application Notes, 1. P_D — T_a curves of QFP080-P-1212".

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	4.50 to 5.50	V

Electrical Characteristics at $V_{CC} = 5.0 \text{ V}, \text{ T}_a = 25^{\circ}\text{C}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply current						
Supply current	I _{CC}	$\label{eq:clr} \begin{array}{l} \text{XCLR} = \text{low, digital I/O pin} = \text{open,} \\ \text{I}_{\text{PD}} = 0 \; \mu\text{A} \end{array}$		20	30	mA
Sleep mode supply current	I _{SLP}	Sleep = 1, $I_{PD} = 0 \ \mu A$	—	3	4	mA
Reference voltage block						
Reference voltage output	V _{REF}		1.20	1.25	1.30	V
Reference voltage variation	ΔV_{REF}	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}, I_{REF} = 0 \text{ mA}$		_	±15	mV
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ $I_{REF} = -1 \text{ mA to } +1 \text{ mA}$		_	± 20	
Maximum output current	ΔV_{OM}	$I_{REF} = -1.5 \text{ mA},$ difference from $I_{REF} = 0 \text{ mA}$	_	_	± 50	mV

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Digital block						
High-level input voltage	V _{IH}	To be applied to a digital input pin	$\begin{array}{c} 0.8 \times \\ V_{CC} \end{array}$			V
Low-level input voltage	V _{IL}	To be applied to a digital input pin			$0.2 \times V_{CC}$	V
High-level input voltage (Schmitt-trigger input)	V _{IHSHC}	To be applied to PWMSK, ERFIL pin	$0.8 \times V_{CC}$			V
Low-level input voltage (Schmitt-trigger input)	V _{ILSHC}	To be applied to PWMSK, ERFIL pin			$0.2 \times V_{CC}$	V
High-level output voltage	V _{OH}	$I_{OH} = -2 \text{ mA}$	$0.8 \times V_{CC}$			V
Low-level output voltage	V _{OL1}	$I_{OL} = +2 \text{ mA}$			$0.2 \times V_{CC}$	V
	V _{OL2}	$I_{OL} = +0.5 \text{ mA}$			0.4	
Input pull-up, pull-down resistance	R _{PD}	Pull-up: $V_{IL} = 0 V$ Pull-down: $V_{IH} = 5.0 V$	75	100	125	kΩ
Input leak	I _{LKH}	To be applied to a digital input pin, $V_{OH} = 5.25 \text{ V}$			80	μA
	I _{LKL}	To be applied to a digital input pin, $V_{OL} = 0 V$			10	
Entire optical monitor						
Offset voltage at playback	V _{PMOFR}	$VR1 = 1 k\Omega$, $I_{PD} = 0 mA$	-15		15	mV
		VR1 = 1 k Ω , difference from an ideal value at I _{PD} = 100 μ A to 200 μ A	-40	0	40	
Offset voltage at recording	V _{PMOFW}	$VR1 = 1 k\Omega$, $I_{PD} = 0 mA$	-15		15	mV
		VR1 = 1 k Ω , difference from an ideal value at I _{PD} = 100 μ A to 2 000 μ A	-20	0	20	
Gain ratio	GR	G_{PMR}/G_{PMW} , output = VNR +0.6 V to 2.0 V	9.0	10.0	11.0	times
Maximum output voltage	V _{PM max}		$V_{CC} \times 0.73$	$V_{CC} \times 0.78$		V
Minimum output voltage	V _{PM min}				VNR- 0.015	V
f characteristics at playback	f _{PMR AAF} OFF	AAF-off VR1 = 1 k Ω , -3 dB, I _{PD} = 100 μ A to 200 μ A	4	6		MHz
f characteristics at recording	f _{PMW}	VR1 = 1 kΩ, -3 dB, I_{PD} = 100 μA to 2 000 μA	6	7.5		MHz
Settling time at playback	t _{PMSETR}	VR1 = 1 k Ω , error ±0.5%, output variation: Range of 0 V to 2 V	_	200	400	ns
Settling time at recording	t _{PMSETW}	VR1 = 1 k Ω , error ±0.5%, output variation: Range of 0 V to 2 V	—	200	400	ns

Electrical Characteristics at $V_{CC} = 5.0 \text{ V}$, $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Current amplification changeover							
Gain at playback	G _{IPDR}	Reg7 = "80h", I_{PD} = 40 μA to 240 μA	9.0	10.0	11.0	times	
Gain at recording	G _{IPDW}	Reg7 = "C0h", I_{PD} = 200 μA to 3 200 μA	0.9	1.0	1.1	times	
Gain ratio	GR _{IPD}	G _{IPDR} /G _{IPDW}	9.0	10.0	11.0	times	
I to V conversion block							
Offset voltage	V _{IVOF}	$VR1 = 0 \Omega, I_{PD} = 0 mA$	-15		15	mV	
DAC1 block							
Resolution	RES1		_	8		bit	
Integral linearity error	EL1		-1.0	_	10.0	LSB	
Differential linearity error	ED1		-1.0		1.5	LSB	
Maximum output current	I _{1max}	DAC1 = "FFh", DAC8 [Fh], DAC7 [0h], DAC9 [00h]	70	80	90	mA	
Offset current	I _{10F1}	"00h" LPF-on, DAC8 [Fh], DAC7 [0h], DAC9 [00h], DAC7, DAC8 characteristics included	-1		1	mA	
	I _{10F2}	"00h" LPF-off, DAC8 [Fh], DAC7 [0h], DAC9 [00h]	-250		250	μA	
LPF on/off gain ratio	GR _{DAL}	G_{LPFON} / G_{LPFOFF} , input amplitude 0 V to 2 V	0.95	1	1.05	times	
Settling time	t _{SDA1}	XWR ↑ to DAC1 [10h to 8Fh], ±2 LSB range, DAC7 [0h], DAC8 [Fh], DAC9 [00h] LPF-off, LPF11 pin open, RDCP2 pin open		400	800	ns	

DAC7 block

Resolution	RES7		—	4	—	bit
Integral linearity error	EL7		-1.0	_	1.0	LSB
Differential linearity error	ED7		- 0.5		0.5	LSB
Maximum output current	I _{7max}	Set to DAC7 = "Fh", DAC9 [1Fh], DAC1 [00h], DAC8 [0h]	133	150	170	mA
Minimum output current	I _{7min}	Set to DAC7 = "0h", DAC9 [1Fh], DAC1 [00h], DAC8 [0h]	- 0.1	0	0.1	mA
Settling time	t _{SDA7}	XWR ↑ to DAC7 [0h to Fh], DAC9 [1Fh], ±0.5 LSB, DAC1 [00h], DAC8 [0h]		50	500	ns

DAC8 block

Resolution	RES8		4		bit
Integral linearity error	EL8	-1.0	_	1.0	LSB
Differential linearity error	ED8	- 0.5		0.5	LSB

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DAC8 block (continued)						
Maximum output current	I _{8max}	Set to DAC8 = "Fh", DAC1 [FFh], DAC9 [1Fh], DAC7 [0h]	70	80	90	mA
Minimum output current	I _{8min}	Set to DAC8 = "0h", DAC1 [FFh], DAC9 [1Fh], DAC7 [0h]	4	5	6	mA
Settling time	t _{SDA8}	XWR ↑ to DAC8 [0h to Fh], DAC1 [80h], ±0.5 LSB, DAC9 [00h], DAC7 [0h]		50	250	ns
DAC2 block	I					
Resolution	RES2			8		bit
Integral linearity error	EL2		-1.0		5.0	LSB
Differential linearity error	ED2		-1.0		1.0	LSB
Maximum output current	I _{2max}	DAC2 = "FFh", DAC4 [Fh]	133	150	170	mA
Offset current	I _{2OF}	DAC2 = "00h", DAC4 [Fh]	- 0.1		0.1	mA
Settling time	t _{SDA2}	XWR ↑ to DAC2 [10h to FFh], ±2.0 LSB, DAC4 [Fh]	—	100	250	ns
DAC3 block	·					
Resolution	RES3			8	_	bit
Integral linearity error	EL3		-1.0		5.0	LSB
Differential linearity error	ED3		-1.0		1.0	LSB
Maximum output current	I _{3max}	DAC3 = "FFh", DAC4 [Fh]	133	150	170	mA
Offset current	I _{3OF}	DAC3 = "00h", DAC4 [Fh]	- 0.1	_	0.1	mA
Settling time	t _{SDA3}	XWR ↑ to DAC3 [10h to FFh], ±2.0 LSB, DAC4 [Fh]	—	200	450	ns
DAC4 block						
Resolution	RES4		—	4		bit
Integral linearity error	EL4		-1.0		1.0	LSB
Differential linearity error	ED4		-1.0	_	1.0	LSB
Maximum output current	I _{4max}	DAC2 = "FFh", DAC4 [Fh]	133	150	170	mA
Offset current	I _{4OF}	DAC2 = "00h", DAC4 [Fh]	- 0.1		0.1	mA
Settling time	t _{SDA4}	XWR ↑ to DAC4 [0h to Fh], ±0.5 LSB, DAC2 [FFh]		300	600	ns
DAC9 block						
Resolution	RES9			5		bit
Integral linearity error	EL9		-1.0	_	1.0	LSB
Differential linearity error	ED9		-1.0		1.0	LSB
Maximum output current	I _{9max}	DAC9 = "1Fh", DAC7 [Fh], DAC1 [00h], DAC8 [0h]	133	150	170	mA

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DAC9 block (continued)						
Offset current	I _{9OF1}	"00h" LPF-on, DAC7 [Fh], DAC8 [0h], DAC1 [00h], DAC7, DAC8 characteristics included	-2.0		2.0	mA
	I _{9OF2}	"00h" LPF-off, DAC7 [Fh], DAC8 [0h], DAC9 [00h], DAC7, DAC8 characteristics included	- 0.85		0.85	
LPF on/off gain ratio	GR _{DA9}	G_{LPFON} / G_{LPFOFF} , input amplitude 0 V to 2 V	0.95	1	1.05	times
Settling time	t _{SDA9}	XWR ↑ to DAC9 [00h to 1Fh] ±2 LSB range, DAC7[Fh], DAC8 [0h], LPF9-off, LPF91 pin open, RDCP1 pin open		400	800	ns
Supply voltage monitoring b	lock					
Abnormality release supply	V _{PSDL}	Sweep V_{CC} from low to high	3.9	4.2	4.5	V
voltage	V _{PSOL}	Sweep V_{CC} from high to low	5.5	5.8	6.1	
Abnormality supply voltage	V _{PSDH}	Sweep V_{CC} from high to low	3.6	3.9	4.2	V
	V _{PSOH}	Sweep V_{CC} from low to high	5.8	6.1	6.4	
Abnormally emitted light det	ection DA	C5				
Resolution	RES5			4		bit
Integral linearity error	EL5		- 0.5		0.5	LSB
Differential linearity error	ED5		- 0.5		0.5	LSB
Offset voltage	V _{50F1}	DAC5 = set to "Fh" and difference to ERREF pin	-20	—	20	mV
	V _{50F2}	DAC5 = set to "0h" and difference to VNR pin, at ERREF – VNR = 2.0 V	105	125	145	
Settling time	t _{SDA5}	XWR ↑ to DAC5 [0h to Fh], ±0.5 LSB	—	0.5	1.5	μs
Abnormally emitted light det	ection DA	C6				
Resolution	RES6		_	4	_	bit
Integral linearity error	EL6		- 0.5		0.5	LSB
Differential linearity error	ED6		- 0.5	_	0.5	LSB
Offset voltage	V _{6OF1}	DAC6 = set to "Fh" and difference to ERREF pin	-20	_	20	mV
	V _{6OF2}	DAC6 = set to "0h" and difference to VNR pin, at ERREF – VNR = 2.0 V	105	125	145	
Settling time	t _{SDA6}	XWR ↑ to DAC6 [0h to Fh] ±0.5 LSB	—	0.5	1.5	μs

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Abnormally emitted light deter	ction opti	cal monitor block				
Offset voltage	V _{EROFR}	In playback, DETMONI pin, $I_{PD} = 0 \ \mu A$	-40		60	mV
	V _{EROFW}	In recording, DETMONI pin, $I_{PD} = 0 \ \mu A$	-50		50	
Gain	G _{ERR1}	In playback, addr. "9": D4 = "0", $I_{PD} = 100 \ \mu A \text{ to } 200 \ \mu A$	9.0	10.0	11.0	times
	G _{ERR2}	In playback, addr. "9": D4 = "1", I _{PD} = 100 μ A to 200 μ A	4.5	5.0	5.5	
	G _{ERW}	In recording, DETMONI pin, $I_{PD} = 100 \ \mu A \text{ to } 2 \ 000 \ \mu A$	0.9	1.0	1.1	
Gain ratio	$\frac{G_{ERR1}}{G_{ERW}}$		9.0	10.0	11.0	times
	$\frac{G_{ERR2}}{G_{ERW}}$		4.5	5.0	5.5	
f characteristics at playback	f _{ERR}	$\label{eq:VR1} \begin{split} &VR1 = 1 \ k\Omega, \ -3 \ dB, \\ &I_{PD} = 100 \ \mu A \ to \ 200 \ \mu A \end{split}$	2.5			MHz
f characteristics at recording	f_{ERW}	$\label{eq:VR1} \begin{split} &VR1 = 1 \ k\Omega, \ -3 \ dB, \\ &I_{PD} = 100 \ \mu A \ to \ 2 \ 000 \ \mu A \end{split}$	5.0			MHz
Control operation response						
Data write to XLDERR \downarrow	t ₂₀₃	XWR \uparrow to XLDERR \downarrow		20	60	ns
Data write to XLDERR ↑	t ₂₀₄	XWR \uparrow to XLDERR \uparrow	_	25	60	ns
Data write to sleep mode	t ₂₀₅	XWR ↑ to sleep mode		4	9	μs
Data write to normal mode	t ₂₀₆	XWR ↑ to normal mode		3	8	μs
RPHOLD \uparrow to DAC5 R \rightarrow W	t ₃₉	RPHOLD ↑ to DAC5 W, at having reached ±0.5 LSB	_	0.40	2.5	μs
RPHOLD \downarrow to DAC5 W \rightarrow R	t ₄₀	RPHOLD \downarrow to DAC5 R, at having reached ±0.5 LSB		0.40	2.5	μs
RPHOLD \uparrow to DAC6 R \rightarrow W	t ₄₁	RPHOLD ↑ to DAC6 W, at having reached ±0.5 LSB	_	0.40	2.5	μs
RPHOLD \downarrow to DAC6 W \rightarrow R	t ₄₂	RPHOLD \downarrow to DAC6 R, at having reached ±0.5 LSB	_	0.40	2.5	μs
RPHOLD \uparrow to HF module signal	t ₄₃	RPHOLD ↑ to XHFON ↑	_	18	30	ns
RPHOLD \downarrow to HF module signal	t ₄₄	RPHOLD \downarrow to XHFON \downarrow		17	30	ns

Electrical Characteristics at $V_{CC} = 5.0 \text{ V}$, $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Recording Modulation						
Peak modulation signal response *1	t ₁₁₃	PKMD \uparrow to LDPK \uparrow 50% delay		18	30	ns
	t ₁₁₄	PKMD \downarrow to LDPK \downarrow 50% delay		17	30	
	t ₁₁₅	LDPK \uparrow 50% to LDPK \downarrow 50%	t ₁₁₂ -3	t ₁₁₂ -1	t ₁₁₂ +1	
	t ₁₁₆	LDPK ↑ 10% to LDPK ↑ 90%	_	6	9	
	t ₁₁₇	LDPK \downarrow 90% to LDPK \downarrow 10%	_	4	6	
Bias modulation signal response *1	t ₁₂₃	BIMD ↑ to LDBI ↑ 50% delay	_	18	30	ns
	t ₁₂₄	BIMD \downarrow to LDBI \downarrow 50% delay	_	17	30	
	t ₁₂₅	LDBI \uparrow 50% to LDBI \downarrow 50%	t ₁₂₂ -3	$t_{122} - 1$	t ₁₂₂ +1	
	t ₁₂₆	LDBI \uparrow 10% to LDBI \uparrow 90%	_	6	9	
	t ₁₂₇	LDBI \downarrow 90% to LDBI \downarrow 10%	_	5	8	

Note) *1: Resistive load (at 15 Ω)

Conditions of t_{113} to t_{117} Measure at approximately 1.75 V of LDPK pin voltage. DAC1 [FFh], DAC8 [7h] DAC9 [1Fh], DAC7 [7h], DAC4 [Fh] DAC2 [00h to 80f] Conditions of t_{123} to t_{127} Measure at approximately 1.75 V of LDPK pin voltage. DAC1 [FFh], DAC8 [7h] DAC9 [1Fh], DAC7 [7h], DAC4 [Fh] DAC3 [00h to 80f]

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Reference voltage block								
Reference voltage temperature characteristics *2	ΔV_{TEM}	$V_{REF} = 0 V, T_a = -20^{\circ}C \text{ to } +75^{\circ}C$			±30	mV		
Digital block								
Low \rightarrow high input hysteresis (Schmidt trigger input)	V _{LHHYS}	To be applied to PWMSK, ERFIL pin		1.0		V		
High \rightarrow low input hysteresis (Schmidt trigger input)	V _{HLHYS}	To be applied to PWMSK, ERFIL pin		1.0		V		
Entire optical monitor								
Offset voltage temperature variation	$\frac{\Delta V_{PMOFR}}{\Delta T}$	In playback, VR1 = 1 k Ω I _{PD} = 10 μ A to 200 μ A T _a = -20°C to +75°C		55	200	$\frac{\mu V}{^{\circ}C}$		
	$\frac{\Delta V_{PMOFW}}{\Delta T}$	In recording, VR1 = 1 k Ω I _{PD} = 100 μ A to 2 000 μ A T _a = -20°C to +75°C		30	150			

Note) *2: Difference between V_{REF} min. and V_{REF} max. within the range of $T_a = -20^{\circ}$ C to $+75^{\circ}$ C.

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Entire optical monitor (contin	ued)					
Gain ratio variation to temperature	$d\frac{G_{PMR}}{G_{PMW}}$	$T_a = -20^{\circ}C \text{ to } +75^{\circ}C$	-3		3	%
Slew rate	S1 _{PMR}	In playback, AAF-off rise	13	18	_	V/µs
	S1 _{PMW}	In recording, rise	35	45	—	
Signal changeover response	t _{PMSW1}	$\times 10 \rightarrow \times 1$, at having reached ±0.5%	_	100	300	ns
	t _{PMSW2}	$\times 1 \rightarrow \times 10$, at having reached ±0.5%		200	500	
f characteristics	f _{PMROF}	In playback, -3 dB , VR1 = 1 k Ω , AAF filter on, I _{PD} 100 μ A to 200 μ A	_	40.8	_	kHz
Current amplification block						
Gain variation to temperature	dG _{IPDR}	In playback, $I_{PD} = 60 \ \mu A$ to 240 μA , $T_a = -20^{\circ}C$ to $+75^{\circ}C$	-3		3	%
	dG _{IPDW}	In recording, $I_{PD} = 0.2$ mA to 3.2 mA, $T_a = -20^{\circ}$ C to +75°C	-3		3	
Gain ratio variation to temperature	$d\frac{G_{IPDR}}{G_{PMW}}$	In playback, $I_{PD} = 60 \ \mu A$ to 240 μA , In recording, $I_{PD} = 0.2 \ mA$ to 3.2 mA, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C	-3		3	%
Signal changeover response	t _{IPDSW1}	$\times 10 \rightarrow \times 1$, at having reached ±0.5%		100	300	ns
	t _{IPDSW2}	$\times 1 \rightarrow \times 10$, at having reached ±0.5%		200	500	
I to V conversion						
Offset voltage variation to temperature	$\frac{dV_{IVOF}}{dT}$	VR1 = 0 Ω , I _{PD} = 0 μ A, T _a = -20°C to +75°C		10	50	$\frac{\mu V}{^{\circ}C}$
Slew rate	Sl _{IV}		20	34		V/µs
Open loop gain	G _{IV}		_	50	_	dB
Zero-cross frequency	f _{0IV}	Output amplitude at 1 V[p-p]	_	8	_	MHz
Settling time	t _{IVSET}	Error $\pm 0.5\%$, output variation: within the range of 0 V to 2 V		100	200	ns
AAF analog SW						
On resistance at playback	R _{AFR}	0Ω between I_{VOUT} and I_{VIN}		175	250	Ω
On resistance at recording	R _{AFW}		_	200	300	Ω
DAC1						
f characteristics	f _{DAC1}	Sine wave signal equivalent to 40 mA[p-p] of current amplitude at LPF12 pin, DAC7 [0h], DAC8 [Fh], DAC9 [00h], RDCP2 pin = 1 000 pF		1		MHz

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DAC1 (continued)						
Driving current temperature characteristics	Err _{DA1}	Including DAC8 when setting at "FFh", DAC7 [0h], DAC8 [Fh], $T_a = 0^{\circ}C$ to +75°C		7	10	%
Offset current variation to temperature	$\frac{dI_{10N}}{dT}$	"00h", LPF-on, including DAC7, DAC8, DAC7 [0h], DAC8 [Fh], $T_a = -25^{\circ}C$ to $+75^{\circ}C$	_	2	10	μA °C
	$\frac{dI_{1OF}}{dT}$	"00h", LPF-off, including DAC7, DAC8, DAC7 [0h], DAC8 [Fh], $T_a = -25^{\circ}C$ to $+75^{\circ}C$		0.5	10	
DAC9						
f characteristics	f _{DAC9}	Sine wave signal equivalent to 40 mA[p-p] of current amplitude at LPF22 pin, DAC7 [Fh], DAC8 [0h], DAC1 [00h], RDCP1 pin = 1 000 pF		1		MHz
Driving current temperature characteristics	Err _{DA9}	Including DAC8 at setting at "1Fh", DAC7 [Fh], DAC8 [0h], $T_a = 0^{\circ}C \sim +75^{\circ}C$		7	10	%
Offset current variation to temperature	$\frac{dI_{9ON}}{dT}$	"00h", LPF-on, including DAC7, DAC8, DAC7 [Fh], DAC8 [0h], $T_a = -25^{\circ}C \sim +75^{\circ}C$	_	2	10	μA °C
	$\frac{dI_{9OF}}{dT}$	"00h", LPF-off, including DAC7, DAC8, DAC7 [Fh], DAC8 [0h], $T_a = -25^{\circ}C$ to $+75^{\circ}C$	—	0.5	10	
DAC7				1		
Driving current temperature characteristics	Err _{DA7}	DAC7 [Fh], DAC8 [0h], DAC9 [1Fh], DAC1 [00h], T _a = -20°C to +75°C	0	8	15	%
Offset current temperature characteristics	dI _{DA7OF} dT	DAC7 [0h], DAC8 [0h], DAC9 [1Fh], DAC1 [00h], T _a = -20°C to +75°C		0.2	10	μA °C
DAC8						
Driving current temperature characteristics	Err _{DA8}	DAC8 [Fh], DAC7 [0h], DAC1 [FFh], DAC9 [00h], $T_a = -20^{\circ}C \text{ to } +75^{\circ}C$	0	8	15	%
Offset current temperature characteristics	dI _{DA8OF} dT	DAC8 [0h], DAC7 [0h], DAC1 [FFh], DAC9 [00h], $T_a = -20^{\circ}C$ to +75°C		0.2	10	μA °C

\blacksquare Electrical Characteristics at V_{CC} = 5.0 V, T_a = 25°C (continued)

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DAC2						
Offset current temperature characteristics	$\frac{dI_{DA2OF}}{dT}$			_	10	μA °C
Driving current temperature characteristics	Err _{DA2}	DAC3 = "FFh", set to DAC4 = "Fh", $T_a = -20^{\circ}C$ to $+75^{\circ}C$		6	10	%
Settling time	t _{SDA2A}	XWR ↑ to DAC2 [Δ4: 10 h to 14h], ±0.5 LSB DAC4 [Fh]		40	100	ns
	t _{SDA2B}	XWR ↑ to DAC2 [Δ7F: 10 h to 8 Fh], ±1.0 LSB DAC4 [Fh]		80	200	

DAC3

Offset current temperature characteristics	dI _{DA3OF} dT		 	10	<u>μA</u> °C
Driving current temperature characteristics	Err _{DA3}	DAC3 = "FFh", set to DAC4 = "Fh", $T_a = -20^{\circ}C$ to $+75^{\circ}C$	 6	10	%
Settling time	t _{SDA3A}	XWR ↑ to DAC3 [Δ4: 10 h to 14h], ±0.5 LSB DAC4 [Fh]	 40	100	ns
	t _{SDA3B}	XWR ↑ to DAC3 [Δ7F: 10 h to 8Fh], ±1.0 LSB DAC4 [Fh]	 80	200	

DAC4

Offset current temperature characteristics	$\frac{dI_{DA4OF}}{dT}$				10	μA °C
Driving current temperature characteristics	Err _{DA4}	DAC4 = "Fh", set to DAC2 = "FFh", $T_a = -20^{\circ}C$ to $+75^{\circ}C$	_	6	10	%

Supply voltage monitoring block

Abnormal supply voltage	V _{PSDHYS}	Voltage difference between abnormality		300	—	mV			
detection hysteresis		detection and release of supply voltage							
		drop, $V_{PSD1} - V_{PSDH}$							
	V _{PSOHYS}	Voltage difference between abnormality	—	300	_				
		detection and release of supply voltage							
		drop, $V_{PSOH} - V_{PSOL}$							
Comparator in abnormally emitted light detection block									
Input offset voltage	V _{PDCOF}	Insufficiently emitted light detection	-5		5	mV			

Excessively emitted light detection

VPOCOF

5

-5

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Uni
Comparator in abnormally en	nitted ligh	t detection block (continued)				
Input offset voltage variation to temperature	dV _{PDCOF} dT	Insufficiently emitted light detection			20	μV °C
	dV _{POCOF} dT	Excessively emitted light detection	_		20	
Abnormally emitted light	t _{PWDNF}	Insufficiently emitted light detection		150	300	ns
detection response	t _{PWOVF}	Excessively emitted light detection	_	150	300	
Abnormally emitted light	t _{PWDR}	Insufficiently emitted light detection		150	300	ns
release response	t _{PWOVF}	Excessively emitted light detection		150	300	
DAC5 block						
Offset voltage variation to temperature	$\frac{dV_{DA50F}}{dT}$	Set to "Fh"		-10	80	μV °C
DAC6 block	- I					
Offset voltage variation to temperature	dV _{DA5OF} dT	Set to "Fh"	_	-10	80	μV °C
Optical monitor for abnormall	y emitted	light detection				
Offset voltage variation to temperature	$\frac{dV_{EROFR}}{dT}$	In playback, $I_{PD} = 0 \ \mu A$	—	-20	210	$\frac{\mu V}{^{\circ}C}$
	dV _{EROFW} dT	In recording, $I_{PD} = 0 \ \mu A$	_	-20	200	
Gain variation to temperature	dG _{ERR1}	In playback, $I_{PD} = 100 \ \mu A$ to 200 μA , $T_a = -20^{\circ}C$ to $+75^{\circ}C$	-3	0.5	3	%
	dG _{ERR2}	In playback, $I_{PD} = 100 \ \mu A$ to 200 μA , $T_a = -20^{\circ}C$ to $+75^{\circ}C$	-3	0.5	3	
	dG _{ERW}	In recording, $I_{PD} = 100 \ \mu\text{A}$ to 2 000 μA , $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$	-3	0.5	3	
Gain ratio variation to temperature	$d\frac{G_{ERR}}{G_{ERW}}$	$T_a = -20^{\circ}C$ to $+75^{\circ}C$	-3	0.5	3	%
Settling time	t _{ERR}	In playback, error: ±0.5%, current variation 100 μA to 200 μA		250	400	ns
	t _{ERW}	In playback, error: ±0.5%, current variation 100 μA to 2 000 μA		100	200	
Signal changeover response (× 10 mode)	t _{ERSW1A}	Playback \rightarrow recording ±0.5% addr "9": D4 = "0" × 10		170	400	ns
	t _{ERSW2A}	Recording \rightarrow playback ±0.5% addr "9": D4 = "0" × 10		550	1 000	

\blacksquare Electrical Characteristics at V_{CC} = 5.0 V, T_a = 25°C (continued)

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Optical monitor for abnormall	y emitted	light detection (continued)				
Signal changeover response × 5 mode	t _{ERSW1B}	Playback \rightarrow recording ±0.5%, addr "9": D4 = "1" × 5	—	200	400	ns
	t _{ERSW2B}	Recording \rightarrow playback ±0.5%, addr "9": D4 = "1" × 5	_	250	500	
Control operation response	Regis	ter setting \rightarrow output				
Data writing to LPF-off	t ₈₇	XWR ↑ to LPF "off"	—	0.8	2.0	μs
Data writing to LPF-on	t ₈₈	XWR ↑ to LPF "on"	—	250	600	ns
Data writing to AAF-off	t ₈₅	XWR ↑ to AAF "off"	—	60	200	ns
Data writing to AAF-on	t ₈₆	XWR ↑ to AAF "on"	—	20	200	ns
Data writing to DAC6 changeover *3	t ₂₀₇	XWR \uparrow to DAC6 ±0.5%	—	0.9	2.5	μs
Data writing to DAC5 changeover *3	t ₂₀₈	XWR 1 to DAC5 ±0.5%	_	0.9	2.5	μs
Data writing to shunt on *4	t ₈₉	XWR ↑ to shunt circuit "on", LDERR register "1"	-		430	ns
Data writing to shunt off *4	t ₉₀	XWR ↑ to shunt circuit "off", LDERR register "0"	—		230	ns
Control operation response	Input	→ output	-	1		
RPHOLD ↑ to PWRMONI changeover	t ₃₇	RPHOLD \uparrow to \times 1, at having reached ±0.5%	_	0.4	0.9	μs
RPHOLD ↓ to PWRMONI changeover	t ₃₈	RPHOLD \downarrow to \times 10, AAF, at having reached ±0.5%	—	0.4	0.9	μs
RPHOLD \uparrow to mask signal ^{*5}	t ₄₅	RPHOLD ↑ to mask signal \downarrow		15	30	ns
Mask signal width at RPHOLD ↑ * ⁵	t ₄₆	Mask signal↓ to mask signal ↑ at RPHOLD high	_	1	1.1	μs
RPHOLD \downarrow to mask signal ^{*5}	t ₄₇	RPHOLD ↓ to mask signal ↓	_	15	30	ns
Mask signal width at RPHOLD ↑ * ⁵	t ₄₈	Mask signal \downarrow to mask signal \uparrow at RPHOLD low	—	1	1.1	μs
RPHOLD↓to AAFRST signal ↑* ⁵	t ₂₁₁	RPHOLD ↓ to AAFRST \uparrow	—	15	30	ns
AAFRST signal width *5	t ₂₁₂	AAFRST \uparrow to AAFRST \downarrow	—	2	2.2	μs
Shunt circuit "on" *6	t ₄₉	XCLR \downarrow to shunt circuit "on"	—		430	ns
Shunt circuit "off" *6	t ₅₀	XCLR ↑ to shunt circuit "off"			230	ns

Note) *3: Measure at DACMONI pin.

*4: Measuring is impossible outside the IC.

*5: Measuring is impossible outside the IC.

The values of t_{46} , t_{48} and t_{212} are determined by the built-in resistor Rin1 (10 k Ω , allowance: 10%) and the external C1. *6: Measuring is impossible outside the IC. The built-in resistor Rin2 (10 k Ω , allowance: 10%) and the external C2.

\blacksquare Electrical Characteristics at V_{CC} = 5.0 V, T_a = 25°C (continued)

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Control operation response	Input	ightarrow output (continued)				
AAF reset "reset" *6	t ₂₁₃	AAFRST ↑ to AAF "reset"	_	—	200	ns
AAF reset "normal" *6	t ₂₁₄	AAFRST \downarrow to AAF "normal"		_	200	ns
Mask signal (wrt. ERFIL) *7	t ₂₁₅	ERFIL \uparrow to XLDERR1 \downarrow	_	1.2	2.0	μs
	t ₂₁₆	ERFIL \downarrow to XLDERR1 \uparrow	_	15	—	ns
$\text{Register} \rightarrow \text{output}$						
Mode changeover	t ₅₅	XWR ↑ to AAFRST test mode	_	25	60	ns
AAFRST	t ₅₆	XWR ↑ to AAFRST normal mode		200	400	
Mode changeover	t ₅₇	XWR ↑ to SW6 test mode	_	90	200	ns
SW6	t ₅₈	XWR ↑ to SW6 normal mode	_	60	150	
Mode changeover	t ₅₉	XWR ↑ to XHFON test mode		20	60	ns
XFHON	t ₆₀	XWR ↑ to XHFON normal mode	_	25	70	
Mode changeover	t ₆₁	XWR ↑ to SW2 test mode	_	30	80	ns
SW2	t ₆₂	XWR ↑ to SW2 normal mode	_	20	50	
Mode changeover	t ₆₃	XWR ↑ to SW3 test mode		30	70	ns
SW3	t ₆₄	XWR ↑ to SW3 normal mode	_	20	50	
Mode changeover	t ₆₇	XWR ↑ to SW1 test mode		20	50	ns
SW1	t ₆₈	XWR ↑ to SW1 normal mode	_	35	100	
Mode changeover	t ₆₉	XWR ↑ to LEVSW test mode	_	0.55	2.0	μs
LEVSW	t ₇₀	XWR ↑ to LEVSW normal mode	_	0.35	1.0	
Test mode operation	t ₇₅	XWR ↑ to AAF filter reset		25	100	ns
AAF filter *8	t ₇₆	XWR ↑ to AAF filter normal	_	200	400	
Test mode operation	t ₇₇	XWR \uparrow to \times 1, when reaching ±0.5%	_	0.4	0.9	μs
Current amplification changeover	t ₇₈	XWR \uparrow to \times 10,	_	0.4	0.9	
		when reaching AAF $\pm 0.5\%$				
Test mode operation	t ₇₉	XWR ↑ to XHFON ↑		20	60	ns
XHFON	t ₈₀	XWR \uparrow to XHFON \downarrow		25	70	
Test mode operation	t ₈₁	XWR \uparrow to SW2 "on" DAC2 ±2.0 LSB		90	200	ns
SW2 *9	t _{81A}	XWR \uparrow to SW2 "on" DAC2 × 50%		30	80	
	t ₈₂	XWR \uparrow to SW2 "off" 0 mA ±2.0 LSB		50	150	
	t _{82A}	XWR \uparrow to SW2 "on" DAC2 \times 50%		20	60	

Note) *6: Measuring is impossible outside the IC. The built-in resistor Rin2 ($10 \text{ k}\Omega$, allowance: 10%) and the external C2.

*7: Measuring is impossible outside the IC.

*8: No external fitting until on/off of switch.

*9: Set the data to "7Fh".

• Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Register \rightarrow output (continued	Register \rightarrow output (continued)						
Test mode operation SW3 *9	t ₈₃	XWR ↑ to SW3 "on" DAC3 ±2.0 LSB		330	600	ns	
	t _{83A}	XWR \uparrow to SW3 "on" DAC3 \times 50%	_	30	80		
	t ₈₄	XWR \uparrow to SW3 "off" 0 mA ±2.0 LSB	_	50	150		
	t _{84A}	XWR \uparrow to SW3 "on" DAC3 \times 50%		20	60		
Test mode operation SW1 *10	t ₉₁	XWR ↑ to SW1 "off"	_	20	100	ns	
	t ₉₂	XWR ↑ to SW1 "on"	_	35	150		
Test mode operation DAC5	t ₉₃	XWR \uparrow to DAC5 W,		1.0	2.5	μs	
		at having reached ±0.5 LSB					
	t ₉₄	XWR \uparrow to DAC5 R,	_	0.7	2.5		
		at having reached ±0.5 LSB					
Test mode operation DAC6	t ₉₅	XWR ↑ to DAC6 W,	—	1.0	2.5	μs	
		at having reached ±0.5 LSB					
	t ₉₆	XWR ↑ to DAC6 R,		0.7	2.5		
		at having reached ±0.5 LSB					

Note) *9 : Data sets up "7Fh".

*10: DAC1 = 7 Fh, DAC9 = 00 h, DAC7 = 0h, DAC8 = Fh

Terminal Equivalent Circuits

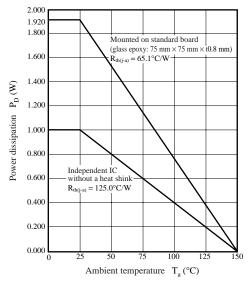
Pin No.	Symbol	Equivalent circuit
1	Pin 1: SGND	_
2	Pin 2: DGND	
3	Pin 3: DGND	
4	Pin 4: PKMD	
5	Pin 5: BIMD	
6	Pin 6: RPHOLD	$\bigcirc 5 k\Omega$ Pin 4, 5, 6, 11, 12, 13, 14, $\Box 100 k\Omega$
		27 DGND
7	Pin 7: XWR	
8	Pin 8: XRD	$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$
		DGND

Pin No.	Symbol	Equivalent circuit
9	DV _{CC}	Pin 9, 34
10	DGND	_
11 12 13 14	Pin 11: AD0 Pin 12: AD1 Pin 13: AD2 Pin 14: AD3	Refer to pin 4
15 16 17 18	Pin 15: DT0 Pin 16: DT1 Pin 17: DT2 Pin 18: DT3	
		DGND DV _{CC} Pin 15, 16, 17, 18, 22, 23, 24, 25
19 20 21	Pin 19: DGND Pin 20: SGND Pin 21: SGND	_
22 23 24 25	Pin 22: DT4 Pin 23: DT5 Pin 24: DT6 Pin 25: DT7	Refer to pin 15
26	XLDEN	Refer to pin 7
27	XCLR	Refer to pin 4
28	DGND	
29	XLDERR	DV _{CC} DV _{CC} Pin 29, 32 DGND

Pin No.	Symbol	Equivalent circuit
30 31	Pin 30: PWMSK Pin 31: ERFIL	$\begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
32	XHFON	Refer to pin 29
33	DGND	
34	DV _{CC}	Refer to pin 9
35	AGND	—
36	VC	AV _{CC} AV _{CC} 50 Ω
37	RREF	AV _{CC}
38	LPF11	AV _{CC} Pin 38, 43 IGND

Pin No.	Symbol	Equivalent circuit
39	LPF12	Pin 39, 44
40	Pim 40: IGND	_
41	Pim 41: SGND	
42	Pim 42: SGND	
43	LPF91	Refer to pin 38
44	LPF92	Refer to pin 39
45	AV _{CC}	AV _{CC} Pin 45, 58
46	DETMONI	CV _{CC} AV _{CC} 46 CV _{CC} 46 CC AV _{CC}
47	PWRMONI	$50 \qquad 49 48 \qquad AV_{CC}$

Pin No.	Symbol	Equivalent circuit
48	AAF	50 49 AV_{CC} 48 48 48 60 $CGND$
49	IVOUT	50) → AV _{CC} → → → → → → → → → → → → → → → → → → →
50	IVIN	AV _{CC} 50 CGND
51	IPD	
		CGND

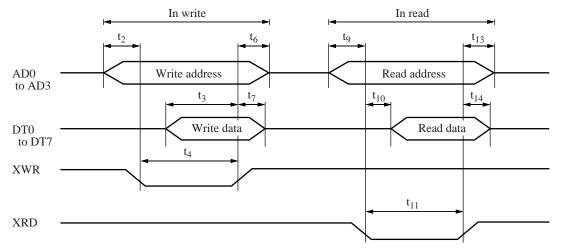

Pin No.	Symbol	Equivalent circuit
53	CV _{CC}	(53) CV _{CC}
54	AGND	_
55 56	Pim 55: ERREF Pim 56: VNR	Pin 55, 56 AW _{CC} AV _{CC} AV _{CC} AGND
57	DACMONI	AV _{CC}
58	AV _{CC}	Refer to pin 45
59 60 61 62	Pim 59: SGND Pim 60: SGND Pim 61: SGND Pim 62: RGND	_
63 64	Pim 63: RDCP1 Pim 64: RDCP2	RV _{CC} Pin 63, 64 RGND

Pin No.	Symbol	Equivalent circuit
65	LDRP	68 RV _{CC} AV _{CC} 65 65 SGND
66	N.C.	
67	N.C.	_
68	RV _{CC}	(68) RV _{CC}
69	LDPK	Pin 70, 75 AV _{CC} Pin 69, 74 Pin 69, 74 SGND PBGND
70	XLDPK	70 (7) (7) (7) (7) (7) (7) (7) (7)

Pin No.	Symbol	Equivalent circuit
71	PKGND	_
72	PKV _{CC}	Pin 72 77 BIV _{CC} SGND
73	PKDCP	AV _{CC} Pin 73, 78 SGND PBGND
74	LDBI	Refer to pin 69
75	XLDBI	Refer to pin 70
76	BIGND	_
77	BIV _{CC}	Refer to pin 72
78	BIDCP	Refer to pin 73
79	SGND	_
80	SGND	_

Application Notes

1. $P_D - T_a$ curves of QFP080-P-1212



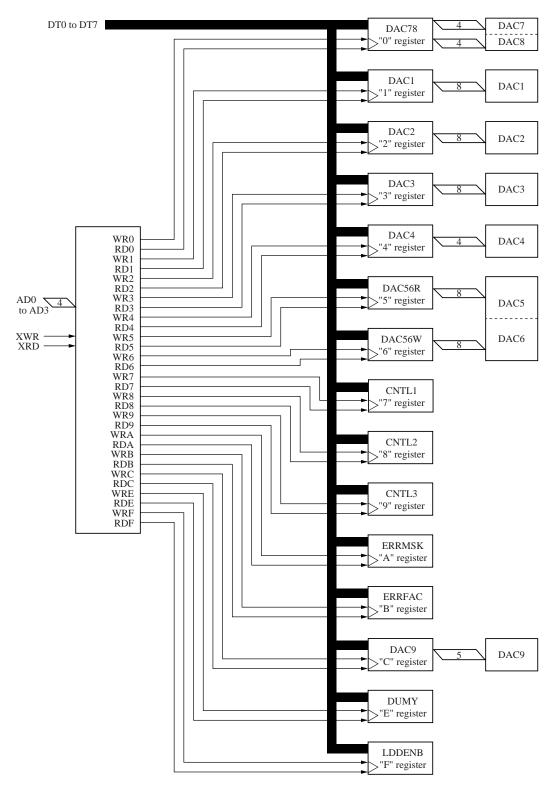
2. Timing chart

1) Definition of rising and falling

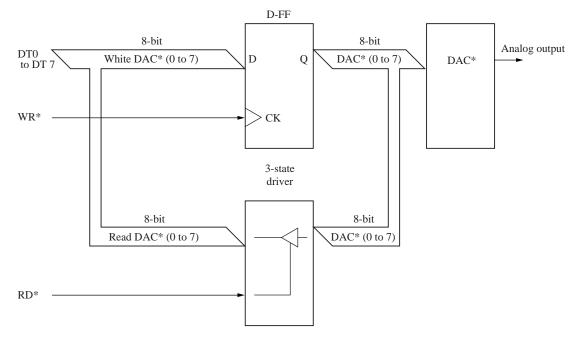
2) Interface

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Switching characteristics	t _{LH}	10% to 90%	_	_	10	ns
	t _{HL}	90% to 10%			10	
Pulse width	t ₄	XWR \downarrow to XWR \uparrow	50			ns
	t ₁₁	XRD ↓ to XRD \uparrow	70	_		
Setup time	t ₂	AD defined to XWR \downarrow	10			ns
	t ₃	DT defined to XWR ↑	35			
	t ₉	AD defined to XRD \downarrow	10	_		
	t ₁₀	XRD \downarrow to DT defined			50	
Hold time	t ₆	XWR ↑ to AD released	0			ns
	t ₇	XWR ↑ to DT released	0	_		
	t ₁₃	XRD ↑ to AD released	0			
	t ₁₄	XRD ↑ to DT released	0		30	

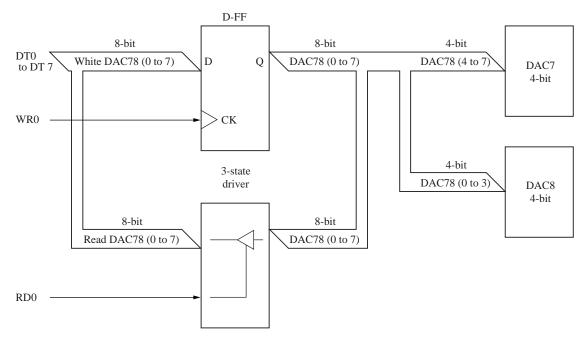
3. I/O specifications

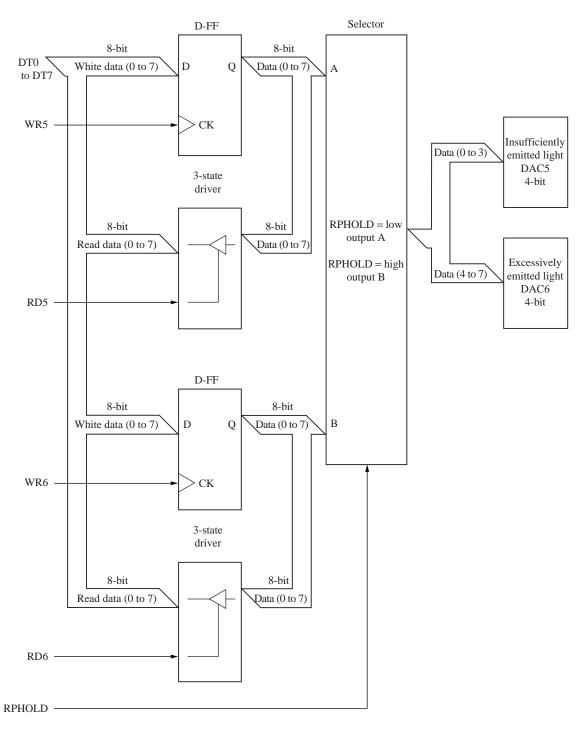

- Parallel interface
 - 1) I/O level is CMOS.
 - 2) Transfers a digital signal to DAC and each mode setting register with 4 addresses, 8 data and 2 control signals.

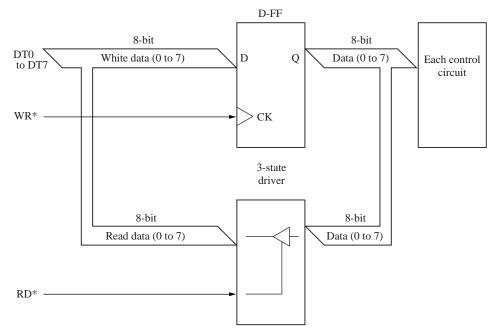
Address signal	AD0 to AD3
Data signal	DT0 to DT7
Control signal	XWR, XRD

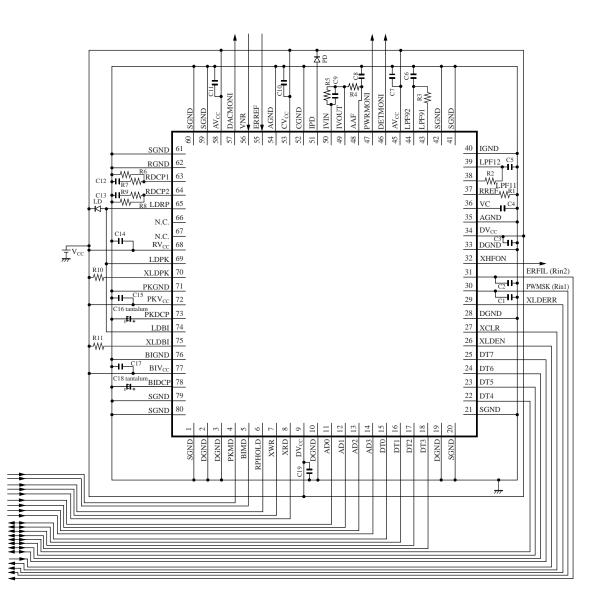

- Write can be done at the rise of XWR. However, selection of a write register can be done at the fall of XWR. DAC and register data are stored at D-FF.
- 4) Read appears on DT0 to DT7 at XRD = low.
- 5) Refer to "■ Application Notes, 2. Timing chart" for the timing chart.
- 6) Each signal line is pulled up and down as below:

Pull-down to GND with 100 k Ω	AD0 to AD3
	DT0 to DT7
Pull-up to V_{CC} with 100 k Ω	XWR
	WRD


4. Signal flow


- 5. Register circuit configuration
 - 1) DAC1, DAC2, DAC3, DAC4, DAC9


2) DAC7, DAC8


- 5. Register circuit configuration (continued)
 - 3) DAC56R, DAC56W

- 5. Register circuit configuration (continued)
 - 4) CNTL1, CNTL2, CNTL3, ERRMSK, ERRFAC, DUMY, LDDENB

■ Application Circuit Example

■ Application Circuit Example (continued)

• Resistance and capacitance

Symbol	Resistor value	Unit
R1	10	kΩ
R2		
R3		—
R4		
R5	1	kΩ
R6	10	kΩ
R7	82	Ω
R8	10	kΩ
R9	82	Ω
R10	3	Ω
R11	3	Ω
(Rin1)	10	kΩ
(Rin2)	10	kΩ

Symbol	Resistor value	Unit
C1	220	pF
C2	100	pF
C3	0.1	μF
C4	0.01	μF
C5	—	
C6	—	
C7	0.1	μF
C8		
С9	18	pF
C10	0.1	μF
C11	0.1	μF
C12	5 600	pF
C13	5 600	pF
C14	0.1	μF
C15	0.1	μF
C16	1	μF
C17	0.1	μF
C18	1	μF
C19	0.1	μF