GN8062 ## GaAs IC #### For semiconductor laser drive #### ■ Features - High-speed switching - High output - Pulse current and DC bias current can be controlled. ## ■ Absolute Maximum Ratings (Ta = 25°C) | Parameter | Symbol | Rating | Unit | | |-------------------------------|----------------------|-------------------------------|------|--| | D11 | V_{DD} | 6 | V | | | Power supply voltage | V _{SS} | -6 | V | | | | V _{IN} | - 0.5 to V _{DD} -1.5 | V | | | Pin voltage | V_{Ip}^{*5} | 1.5 to V _{DD} | V | | | | V _{OUT} * 1 | V_{DD} | V | | | Doving assument | I _{DD} * 4 | 50 | mA | | | Power current | I _{SS} | 40 | mA | | | Output current | I _{OUT} | 145 | mA | | | Allowable power dissipation | P _D * 2 | 700 | mW | | | Channel temperature | T _{ch} | 150 | °C | | | Storage temperature | T _{stg} | - 55 to +150 | °C | | | Operating ambient temperature | Topr*3 | -10 to +75 | °C | | - Do not apply the voltage higher than the set V_{DD} . - Guaranteed value of the unit at Ta= 25°C. - Range in which the IC circuit function operates and not the guaranteed range of electric characteristics. - I_{DD} is a current when the pulse output current is zero. - Voltage when the constant current source has been connected. # ■ Electrical Characteristics (Ta = 25°C) | Parameter | Symbol | Test circuit | Condition | Min | Тур | Max | Unit | |--|---------------------|--------------|---|-----|-----|-----|------| | Pulse output current | I _{pmax} . | 1 | $V_{DD} = 5V$, $V_{SS} = -5V$, $V_{IN} = 2V$, $I_p = 120$ mA, $R_L = 10\Omega$ | 100 | 120 | | mA | | | I _{pmin} . | 1 | V_{DD} = 5V, V_{SS} = -5V, V_{IN} = 0.4V, I_p =120mA, R_L =10 Ω | | 1 | 5 | mA | | Supply current $\frac{{\rm I_{DD}}^*}{{\rm I_{SS}}}$ | I _{DD} * 1 | 2 | $V_{DD} = 5V, V_{SS} = -5V, V_{IN} = 0.4V$ | | 35 | 50 | mA | | | I _{SS} | 2 | $I_p = 0, R_L = 10\Omega$ | | 25 | 40 | mA | | Input voltage V_{IH} V_{IL} | V _{IH} | | | 2.5 | | | V | | | V _{IL} | | | | | 0.4 | V | | Rise time | t _r * 2 | 3 | $V_{DD} = 5V, V_{SS} = -5V, I_p = 100 \text{mA}$ | | | 7 | ns | | Fall time | t _f * 2 | 3 | R_L =10 Ω | | | 5 | ns | GaAs MMICs GN8062 *1 The current value to be supplied from the 5V power supply is a total sum of this value plus the pulse output current and bias output current. * 2 Waveform of input and output signals The rise/fall time of the input signal is 2ns (10 to 90%) Test circuit 2 ## Test circuit 3 $C_1: 0.1 \mu F$ $C_2: 3.3 \mu F$ $R_1: 10 \Omega$ $R_2: 50 \Omega$ GaAs MMICs GN8062 ### ■ Block Diagram #### ■ Caution for Handling - 1) The recommended V_{IN} voltage is 2.5 to 3V for [H] and 0 to 0.4V for [L]. - 2) Do not apply V_{IN} while the power supply is OFF. - 3) For the current source to be connected to the V_{IP} pin, use a Si bipolar transistor as shown in the circuit diagram. (Example: 2SD874) To connect a resistor to the emitter or collector, use a resistor of a few ohm. The use of higher resistor may cause large change in the voltage at the V_{IP} pin, and may make the output waveform distortion. (See the pulse output current control example). To use another current control circuit, set so that the V_{IP} pin voltage becomes around 2V. - 4) When mounting, minimize the connection distance between the semiconductor laser and IC, and use the chip parts (C, R) of less parasitic effects. - 5) Attention to damage by the power surge (see the example connection of the pin protection circuit). During handling, take care to ground the human body and solder iron tip. - 6) When the power supply is turned ON and OFF, set the current value of the current source connected to the V_{IP} pin to zero. This is important to prevent the large current flow through the semiconductor laser during power ON/OFF. When the power supply is ON, be sure to turn ON $V_{\rm DD}$, after $V_{\rm SS}$ is completely equal to – 5V. When the power supply is OFF, be sure to turn OFF $V_{\rm SS}$, after $V_{\rm DD}$ is completely 0V. 7) Pay attention to release the heat. Connection example of pin protection circuit Example of pulse output current control circuit