P4C148, P4C149 ULTRA HIGH SPEED 1K x 4 STATIC CMOS RAMS

FEATURES

Σ.

- Full CMOS, 6T Cell
- High Speed (Equal Access and Cycle Times)
 - 10/12/15/20/25 ns (Commercial)
 - 15/20/25/35 ns (P4C148 Military)

Low Power Operation

- 715 mW Active -10 (Commecial)
- 550 mW Active -25 (Commercial)
- 110 mW Standby (TTL Input) P4C148
- 55 mW Standby (CMOS Input) P4C148
- Single 5V ± 10% Power Supply

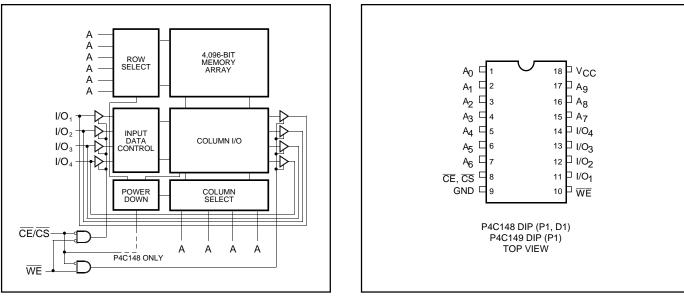
- Two Options
 - P4C148 Low Power Standby Mode
 - P4C149 Fast Chip Select Control
- Common Input/Output Ports
- Three-State Outputs
- Fully TTL Compatible Inputs and Outputs
- Standard Pinout (JEDEC Approved)
 18 Pin 300 mil DIP

DESCRIPTION

Σ.

2

The P4C148 and P4C149 are 4,096-bit ultra high-speed static RAMs organized as 1K x 4. Both devices have common input/output ports. The P4C148 enters the standby mode when the chip enable (\overline{CE}) goes HIGH; with CMOS input levels, power consumption is extremely low in this mode. The P4C149 features a fast chip select capability using \overline{CS} . The CMOS memories require no clocks or refreshing, and have equal access and cycle times. Inputs are fully TTL-compatible. The RAMs operate from a single $5V \pm 10\%$ tolerance power supply.


FUNCTIONAL BLOCK DIAGRAM

Access times as fast as 10 nanoseconds are available, permitting greatly enhanced system operating speeds.

CMOS is used to reduce power consumption when active; for the P4C148, consumption is further reduced in the standby mode.

The P4C148 and P4C149 are available in 18-pin 300 mil DIP packages providing excellent board level densities.

PIN CONFIGURATIONS

Means Quality, Service and Speed

MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +7	V
V _{term}	Terminal Voltage with Respect to GND (up to 7.0V)	−0.5 to V _{cc} +0.5	V
T _A	Operating Temperature	-55 to +125	°C

RECOMMENDED OPERATING	
CONDITIONS	

Grade ⁽²⁾	Ambient Temp	Gnd	V _{cc}
Commercial	0°C to 70°C	0V	$5.0V\pm10\%$
Military	-55°C to +125°C	0V	$5.0V \pm 10\%$

Symbol	Parameter	Value	Unit
T _{BIAS}	Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	50	mA

CAPACITANCES⁽⁴⁾

 $(V_{cc} = 5.0V, T_{A} = 25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter	Conditions	Тур.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	5	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	7	pF

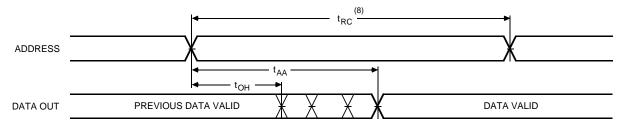
DC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply voltage (2)

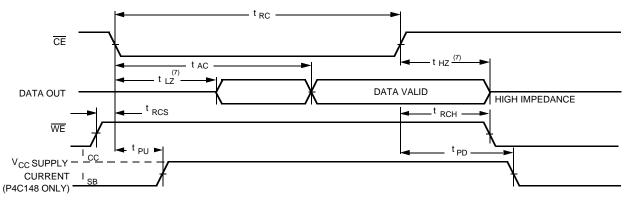
Sum		Test Conditions		P40	C148	P40	C149	11
Sym.	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output High Voltage (TTL Load)	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}.$		2.4		2.4		V
V _{oL}	Output Low Voltage (TTL Load)	I_{oL} = +8 mA, V_{cc} = Min			0.4		0.4	V
V _{IH}	Input High Voltage			2.2	V _{cc} +0.5	2.2	V _{cc} +0.5	V
V _{IL}	Input Low Voltage			-0.5(3)	0.8	-0.5 ⁽³⁾	0.8	V
I _{LI}	Input Leakage Current	V_{cc} = Max., V_{IN} = GND to V_{cc}	Mil. Comm'l	-10 -5	+10 +5	-10 -5	+10 +5	μΑ
I _{LO}	Output Leakage Current	$V_{cc} = Max., \overline{CE}, \overline{CS} = V_{H}, V_{OUT} = GND \text{ to } V_{cc}$	Mil. Comm'l	-10 -5	+10 +5	-10 -5	+10 +5	μA
I _{SB}	Standby Power Supply Current (TTL Input Levels)	CE≥V _{IH} , V _{CC} = Max., f=Max., Outputs Open	Mil. Comm'l		30 23		N/A N/A	mA
I _{SB1}	Standby Power Supply Current (CMOS Input Levels)	$ \overline{CE} \ge V_{HC}, V_{CC} = Max., f = 0, Outputs Open V_{IN} \le 0.2V \text{ or } V_{IN} \ge V_{CC} - 0.2V $	Mil. Comm'l		15 10		N/A N/A	mA

N/A = Not Applicable

POWER DISSIPATION CHARACTERISTICS VS. SPEED


Symbol	Parameter	Temperature Range	-10	-12	-15	-20	-25	-35	Unit
I _{cc}	Dynamic Operating Current	Commercial Military	130 N/A	130 N/A	120 145	115 135	100 125	N/A 120	mA mA

AC CHARACTERISTICS—READ CYCLE


 $(V_{cc} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

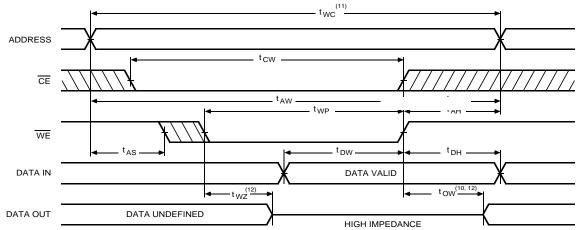
Sym.	Parameter	-1	0	-1	12	-	15	-2	20	-2	25	-:	35	Unit
Cym.	i arameter	Min	Max	onne										
t _{RC}	Read Cycle Time	10		12		15		20		25		35		ns
t _{AA}	Address Access Time		10		12		15		20		25		35	ns
t _{AC} [†]	Chip Enable Access Time (P4C148)		10		12		15		20		25		35	ns
t _{AC} *	Chip Select Access Time (P4C149)		8		10		12		14		15		20	ns
t _{oH}	Output Hold from Address Change	3		3		3		3		3		3		ns
t_z*	Chip Enable to Output in Low Z	2		2		2		2		2		2		ns
t _{HZ} *	Chip Disable to Output in High Z		4		5		6		8		10		14	ns
t _{RCS}	Read Command Setup Time	0		0		0		0		0		0		ns
t _{RCH}	Read Command Hold Time	0		0		0		0		0		0		ns
t _{PU} †	Chip Enable to Power Up Time	0		0		0		0		0		0		ns
$\mathbf{t}_{PD}^{\dagger}$	Chip Disable to Power Down Time		10		12		15		20		25		35	ns

TIMING WAVEFORM OF READ CYCLE NO. 1⁽⁵⁾

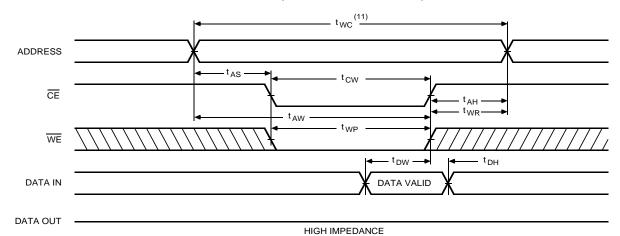
TIMING WAVEFORM OF READ CYCLE NO. 2⁽⁶⁾

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with V_L and I_L not more negative than -3.0V and -100mA, respectively, are permissible for pulse widths up to 20ns.
- 4. This parameter is sampled and not 100% tested.
- 5. \overline{CE} is LOW and \overline{WE} is HIGH for READ cycle.
- WE is HIGH, and address must be valid prior to or coincident with CE transition LOW.
- 7. Transition is measured ± 200 mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.
- 8. Read Cycle Time is measured from the last valid address to the first transitioning address.


 Σ

AC CHARACTERISTICS—WRITE CYCLE


 $(V_{cc} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

		-1	0	-1	2	-1	5	-2	20	-2	25	-3	85	11
Sym.	· Parameter Min Ma		Max	Min	Max	Unit								
t _{wc}	Write Cycle Time	10		12		15		20		25		35		ns
t _{cw}	Chip Enable Time to End of Write	8		10		12		16		20		25		ns
t _{AW}	Address Valid to End of Write	8		10		12		16		20		25		ns
t _{AS}	Address Set-up Time	0		0		0		0		0		0		ns
t _{wP}	Write Pulse Width	8		10		12		16		20		25		ns
t _{AH}	Address Hold Time from End of Write	0		0		0		0		0		0		ns
t _{DW}	Data Valid to End of Write	5		6		7		9		12		16		ns
t _{DH}	Data Hold Time	0		0		0		0		0		0		ns
t _{wz}	Write Enable to Output in High Z		5		6		7		7		8		12	ns
t _{ow}	Output Active from End of Write	0		0		0		0		0		0		ns

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED)⁽⁹⁾

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CE/CS CONTROLLED)⁽⁹⁾

Notes:

- 10. If \overrightarrow{CE} goes HIGH simultaneously with \overrightarrow{WE} high, the output remains in a high impedance state.
- 11. Write Cycle Time is measured from the last valid address to the first transition address.
- Transition is measured ±200mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.

^{9.} \overline{CE} and \overline{WE} must be LOW for WRITE cycle.

V_{TH} = 1.73 V

 $30pF(5pF^* \text{ for } t_{HZ}, t_{LZ}, t_{OHZ},$

tOLZ, tWZ and tOW)

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

TRUTH TABLE

DOUT

Mode	CE	WE	Output	Power
Standby	Н	Х	High Z	Standby
Read	L	Н	D _{OUT}	Active
Write	L	L	High Z	Active

 $R_{TH} = 166.5\Omega$

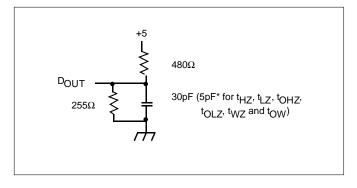


Figure 1. Output Load

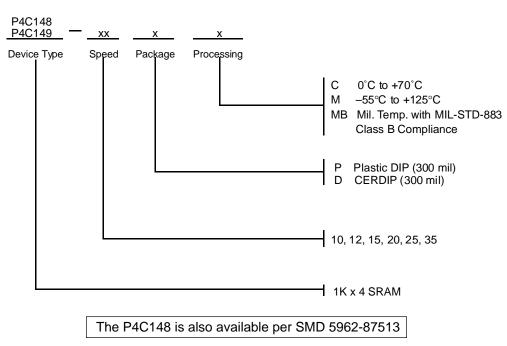
Figure 2. Thevenin Equivalent

* including scope and test fixture.

Note:

Due to the ultra-high speed of the P4C147, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the V_{cc} and ground planes directly up to the contactor fingers. A 0.01 μ F high frequency capacitor

is also required between V_{cc} and ground. To avoid signal reflections, proper termination must be used; for example, a 50 Ω test environment should be terminated into a 50 Ω load with 1.73V (Thevenin Voltage) at the comparator input, and a 116 Ω resistor must be used in series with D_{OUT} to match 166 Ω (Thevenin Resistance).


ズ

PACKAGE SUFFIX

Package Suffix	Description
Р	Plastic DIP, 300 mil wide standard
D	CERDIP, 300 mil wide

TEMPERATURE RANGE SUFFIX

Temperature Range Suffix	Description
С	Commercial Temperature Range, 0°C to +70°C.
M	Military Temperature Range, –55°C to +125°C.
MB	Mil. Temp. with MIL-STD-883 Class B Compliance.

ORDERING INFORMATION

SELECTION GUIDE

The P4C148/P4C149 are available in the following temperature, speed and package options.

Temperature Range	Speed (ns) Package	10	12	15	20	25	35
Commercial	Plastic DIP	-10PC	-12PC	-15PC	-20PC	-25PC	N/A
Military Temp. (P4C148 only)	CERDIP (300 mil)	N/A	N/A	-15DM	-20DM	–25DM	-35DM
Military Processed* (P4C148 only)	CERDIP (300 mil)	N/A	N/A	–15DMB	-20DMB	–25DMB	-35DMB

* Military temperature range with MIL-STD-883, Class B processing.

N/A = Not Available