8:1 MUX/DEMUX BusSwitch

Product Features:

- Near zero propagation delay
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power ($0.2 \mu \mathrm{~A}$ Typical) - Ideally suited for notebook applications
- Pin compatible with 74 series 251 logic devices
- Packages available:
- 16-pin 150 mil wide plastic QSOP (Q)
- 16-pin 300 mil wide plastic SOIC (S)
- 16-pin 150 mil wide plastic SOIC (W)

Logic Block Diagram

Truth Table ${ }^{(1)}$

	Select				
E	S2	S1	S0	Y	Function
H	X	X	X	Hi-Z	Disable
L	L	L	L	I0	S2-0 $=0$
L	L	L	H	I1	S2-0 $=1$
L	L	H	L	I2	S2-0 $=2$
L	L	H	H	I3	S2-0 $=3$
L	H	L	L	I4	S2-0 $=4$
L	H	L	H	I5	S2-0 $=5$
L	H	H	L	I6	S2-0 $=6$
L	H	H	H	I7	S2-0 $=7$

[^0]Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Supply Voltage to Ground Potential (Inputs \& Vcc Only) -0.5 V to +7.0 VSupply Voltage to Ground Potential (Outputs \& D/O Only) -0.5 V to +7.0 VDC Input Voltage ... -0.5 V to +7.0 VDC Output Current ... 120 mAPower Dissipation ... 0.5 W	

DC Electrical Characteristics (Over the Operating Range, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ ${ }^{(2)}$	Max.	Units
Vif	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
IH	Input HIGH Current	Vcc $=$ Max., V ${ }_{\text {IN }}=\mathrm{Vcc}$			± 1	$\mu \mathrm{A}$
ILL	Input LOW Current	$\mathrm{V}_{\text {cc }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	$\mu \mathrm{A}$
Iozh	High Impedance Output Current	$0 \leq \mathrm{I}, \mathrm{Y} \leq \mathrm{VCC}$			± 1	$\mu \mathrm{A}$
VIK	Clamp Diode Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IIN}=-18 \mathrm{~mA}$		-0.7	-1.2	V
Ios	Short Circuit Current ${ }^{(3)}$	$\mathrm{I}(\mathrm{Y})=0 \mathrm{~V}, \mathrm{Y}(\mathrm{I})=\mathrm{Vcc}$	100			mA
VH	Input Hysteresis at Control Pins			150		mV
Ron	Switch On Resistance ${ }^{(4)}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\text { Min. }, \mathrm{V} \text { IN }=0.0 \mathrm{~V}, & \mathrm{ION}=48 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V} \text { IN }=2.4 \mathrm{~V}, & \mathrm{ION}=15 \mathrm{~mA} \end{array}$		$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 15 \end{gathered}$	Ω

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameters ${ }^{(5)}$	Description	Test Conditions	Typ	Max.	Units
Cin	Input Capacitance	VIN $=0 \mathrm{~V}$		6	pF
CI(off)	I0 - I7 Capacitance, Switch Off	VIN $=0 \mathrm{~V}$		6	pF
Cy (off)	Y Capacitance, Switch Off	VIN $=0 \mathrm{~V}$		48	pF
$\mathrm{CI}(\mathrm{ON})$	I0 - I7 Capacitance, Switch On	VIN $=0 \mathrm{~V}$	35	54	pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between I and Y pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (I,Y) pins.
5. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$		Min.	Typ ${ }^{(2)}$	Max.	Units
Icc	Quiescent Power Supply Current	$\mathrm{VCC}=$ Max .	VIN $=$ GND or VCC		0.1	3.0	$\mu \mathrm{A}$
$\Delta \mathrm{Icc}$	Supply Current per Input @ TTL HIGH	$\mathrm{Vcc}=\mathrm{Max}$.	$\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}^{(3)}$			2.5	mA
ICCD	Supply Current per Input per $\mathrm{MHz}^{(4)}$	$\begin{aligned} & \text { Vcc = Max., } \\ & \text { I and Y Pins Open } \\ & \overline{\mathrm{E}}=\text { GND } \end{aligned}$ Control Input Toggling 50\% Duty Cycle				0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{VIN}=3.4 \mathrm{~V}$, control inputs only); I and Y pins do not contribute to Icc.
4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The I and Y inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

Parameters	Description	Conditions ${ }^{(1)}$			Unit
			Com.		
			Min	Max	
tIY	PropagationDelay ${ }^{(23)}$ Into Y	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$		0.25	ns
tsy	BusSelectTime Snto Y		0.5	6.6	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	BusEnableTime Eto Y		0.5	6.0	ns
$\begin{aligned} & \text { tphz } \\ & \text { tPLZ } \end{aligned}$	BusDisableTime Eto Y		0.5	6.0	ns

Notes:

1. See test circuit and wave forms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

[^0]: Note:

 1. $\mathrm{H}=$ High Voltage Level L = Low Voltage Level
