PI74LPT2Q245 #### Fast CMOS 3.3V 8-Bit Bidirectional Transceiver # **Product Features** - Compatible with LCXTM and LVTTM families of products - Supports 5V Tolerant Mixed Signal Mode Operation - Input can be 3V or 5V - Output can be 3V or connected to 5V bus - Advanced Low Power CMOS Operation - Excellent output drive capability: Balanced drives (12 mA sink and source) - 33Ω Series Resistors on all outputs - Low ground bounce outputs - Hysteresis on all inputs - Industrial operating temperature range: -40°C to +85°C - Packages available: - -20-pin 173 mil wide plastic TSSOP(L) - -20-pin 150 mil wide plastic QSOP (Q) - -20-pin 150 mil wide plastic TQSOP (R) - -20-pin 300 mil wide plastic SOIC (S) # **Product Description** Pericom Semiconductor's PI74LPT series of logic circuits are produced in the Company's advanced 0.6 micron CMOS technology achieving high speed while maintaining low power operation. The PI74LPT2Q245 is an 8-bit bidirectional transceiver designed for asynchronous two-way communication between data buses. The transmit/receive input pin (T/\overline{R}) determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports, and receive (active LOW) from B ports to A ports. The Output Enable (\overline{OE}) input, when HIGH, disables both A and B ports by placing them in HIGH Z condition. The PI74LPT2Q245 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3V/5.0V # **Logic Block Diagram** # **Product Pin Configuration** | T/R | | |-----|--| |-----|--| ## **Product Pin Description** | Pin Name | Description | |----------|--| | ŌĒ | 3-State Output Enable
Inputs (Active LOW) | | T/R | Direction Control Input | | A0-A7 | Side A Inputs or
3-State Outputs | | B0-B7 | Side B Inputs or
3-State Outputs | | GND | Ground | | Vcc | Power | ## Truth Table⁽¹⁾ | Inputs ⁽¹⁾ | | | |-----------------------|---|------------------------| | ŌĒ T/R̄ | | Outputs ⁽¹⁾ | | L | L | Bus B Data to Bus A | | L | Н | Bus A Data to Bus B | | Н | X | High State Z | 1. H = High Voltage Level, X = Don't Care, 1 L = Low Voltage Level, Z = High Impedance # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature65°C to +150°C | |--| | Ambient Temperature with Power Applied –40°C to +85°C | | Supply Voltage to Ground Potential (Inputs & Vcc Only) –0.5V to +7.0V | | Supply Voltage to Ground Potential (Outputs & D/O Only) -0.5V to +7.0V | | DC Input Voltage0.5V to +7.0V | | DC Output Current | | Power Dissipation | #### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # **DC Electrical Characteristics** (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, VCC = 2.7V to 3.6V) | Parameters | Description | Test Conditions ⁽¹⁾ | | Min. | Typ ⁽²⁾ | Max. | Units | |----------------|--------------------------------------|--|--|----------|---------------------------|------|-------| | Vih | Input HIGH Voltage (Input pins) | Guaranteed Logic HIGH Level | | 2.2 | _ | 5.5 | V | | | Input HIGH Voltage (I/O pins) | | | 2.0 | _ | 5.5 | V | | VIL | Input LOW Voltage | Guaranteed Logic LOW L | evel | -0.5 | _ | 0.8 | V | | | (Input and I/O pins) | | | | | | | | Іін | Input HIGH Current (Input pins) | $V_{CC} = Max.$ | $V_{IN} = 5.5V$ | _ | _ | ±1 | μA | | | Input HIGH Current (I/O pins) | $V_{CC} = Max.$ | $V_{IN} = V_{CC}$ | _ | _ | ±1 | μΑ | | IIL | Input LOW Current (Input pins) | $V_{CC} = Max.$ | $V_{IN} = GND$ | _ | _ | ±1 | μΑ | | | Input LOW Current (I/O pins) | $V_{CC} = Max.$ | Vin = GND | _ | _ | ±1 | μA | | Іохн | High Impedance Output Current | $V_{CC} = Max.$ | $V_{OUT} = 5.5V$ | _ | _ | ±1 | μA | | Iozl | (3-State Output pins) | $V_{CC} = Max.$ $V_{OUT} = GND$ | | _ | _ | ±1 | μA | | Vik | Clamp Diode Voltage | $V_{CC} = Min., I_{IN} = -18 \text{ mA}$ | _ | -0.7 | -1.2 | V | | | Iоdh | Output HIGH Current | $V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{O} = 1.5V^{(3)}$ | | -20 | _ | -60 | mA | | Iodl | Output LOW Current | $V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or $V_{IN} = V_{IH}$ | $V_{\rm IL}, V_{\rm O} = 1.5V^{(3)}$ | 20 | _ | 60 | mA | | Vон | Output HIGH Voltage | $V_{CC} = M_{IN}$. | Iон = -0.1 mA | Vcc -0.2 | _ | _ | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | | | | | | | | | $V_{CC} = 3.0V$ | $V_{CC} = 3.0V$ $I_{OH} = -8 \text{ mA}$ | | _ | _ | V | | | | VIN = VIH or VIL | | | | | | | Vol | Output LOW Voltage | Vcc = Min. | IoL = 0.1 mA | _ | _ | 0.2 | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | IoL = 8 mA | _ | _ | 0.5 | V | | Ios | Short Circuit Current ⁽⁴⁾ | Vcc = Max. ⁽³⁾ , Vout ≤ GND | | -40 | _ | -100 | mA | | Ioff | Power Down Disable | $V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 4.5V$ | | _ | _ | ±100 | μΑ | | V _H | Input Hysteresis | | | _ | 150 | _ | mV | #### Notes: - 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. - 2. Typical values are at Vcc = 3.3V, +25°C ambient and maximum loading. - 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second. - 4. This parameter is guaranteed but not tested. # **Capacitance** ($TA = 25^{\circ}C$, f = 1 MHz) | Parameters ⁽¹⁾ | Description | Test Conditions | Тур. | Max. | Units | |---------------------------|--------------------|-----------------|------|------|-------| | Cin | Input Capacitance | $V_{IN} = 0V$ | 4.5 | 6 | pF | | Соит | Output Capacitance | $V_{OUT} = 0V$ | 5.5 | 8 | pF | 2 ### Note: 1. This parameter is determined by device characterization but is not production tested. # **Power Supply Characteristics** | Parameters | Description | Test Conditions ⁽¹⁾ | | | Typ ⁽²⁾ | Max. | Units | |------------|---|--|--|--|---------------------------|--------------------|------------| | Icc | Quiescent Power Supply Current | $V_{CC} = Max.$ | V _{IN} = GND or V _{CC} | | 0.1 | 10 | μΑ | | ΔΙcc | Quiescent Power Supply Current
TTL Inputs HIGH | Vcc = Max. | $V_{\rm IN} = V_{\rm CC} - 0.6V^{(3)}$ | | 2.0 | 30 | μА | | Іссь | Dynamic Power Supply ⁽⁴⁾ | Vcc = Max., Outputs Open OE = GND One Bit Toggling 50% Duty Cycle | Vin = Vcc
Vin = GND | | 50 | 75 | μA/
MHz | | Ic | Total Power Supply
Current ⁽⁶⁾ | $V_{CC} = Max.,$ Outputs Open $fi = 10 \text{ MHz}$ $50\% \text{ Duty Cycle}$ $\overline{OE} = GND$ One Bit Toggling | VIN = VCC - 0.6V
VIN = GND | | 0.6 | 2.3 | mA | | | | Vcc = Max.,
Outputs Open
fi = 2.5 MHz
50% Duty Cycle
\overline{OE} = GND
8 Bits Toggling | Vin = Vcc – 0.6V
Vin = GND | | 2.1 | 4.7 ⁽⁵⁾ | | #### Notes 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device. 3 - 2. Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient. - 3. Per TTL driven input; all other inputs at Vcc or GND. - 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations. - 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested. - 6. IC = IQUIESCENT + INPUTS + IDYNAMIC - $I_{C} = I_{CC} + \Delta I_{CC} D_{H}N_{T} + I_{CCD} (f_{CP}/2 + f_{I}N_{I})$ - Icc = Quiescent Current (Iccl, Icch and Iccz) - Δ Icc = Power Supply Current for a TTL High Input - DH = Duty Cycle for TTL Inputs High - NT = Number of TTL Inputs at DH - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices) - NCP = Number of Clock Inputs at fCP - fi = Input Frequency - $N_I = Number of Inputs at fi$ - All currents are in milliamps and all frequencies are in megahertz. # Switching Characteristics over Operating Range⁽¹⁾ | | | | | LPT2Q245
Com. LPT2Q245 | | | | |------------|----------------------------|---------------------------|---------|---------------------------|---------|------|----| | Parameters | Description | Conditions ⁽²⁾ | Min.(3) | Max. | Min.(3) | Max. | | | tplh | Propagation Delay | CL = 50 pF | 1.5 | 7.0 | 1.5 | 4.6 | ns | | tphl. | A to B, B to A | $R_L = 500\Omega$ | | | | | | | tpzh | Output Enable Time | | 1.5 | 8.5 | 1.5 | 6.2 | ns | | tpzl | OE to A or B | | | | | | | | tphz | Output Disable Time(4) | | 1.5 | 7.5 | 1.5 | 5.0 | ns | | tplz | OE to A or B | | | | | | | | tpzh | Output Enable Time | | 1.5 | 8.5 | 1.5 | 6.2 | ns | | tpzl | T/R to A or B | | | | | | | | tphz | Output Disable Time(4) | | 1.5 | 7.5 | 1.5 | 5.0 | ns | | tplz | T/R to A or B | | | | | | | | tsk(o) | Output Skew ⁽⁵⁾ | | | 0.5 | | 0.5 | ns | # **Notes:** - 1. Propagation Delays and Enable/Disable times are with $Vcc = 3.3V \pm 0.3V$, normal range. For Vcc = 2.7V, extended range, all Propagation Delays and Enable/Disable times should be degraded by 20%. - 2. See test circuit and waveforms. - 3. Minimum limits are guaranteed but not tested on Propagation Delays. - 4. This parameter is guaranteed but not production tested. - 5. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design. 2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com