## DATA SHEET

# PCF8578 <br> LCD row/column driver for dot matrix graphic displays 

Product specification
File under Integrated Circuits, IC12

## LCD row/column driver for dot matrix graphic displays

## CONTENTS

1 FEATURES

## 2 APPLICATIONS

3 GENERAL DESCRIPTION
4
5 BLOCK DIAGRAM
6 PINNING
7 FUNCTIONAL DESCRIPTION
7.1 Mixed mode
7.2 Row mode
7.3 Multiplexed LCD bias generation
7.4 Power-on reset
7.5 Internal clock
7.6 External clock
7.7 Timing generator
7.8 Row/column drivers
7.9 Display mode controller
7.10 Display RAM
7.11 Data pointer
7.12 Subaddress counter
$7.13 \quad \mathrm{I}^{2} \mathrm{C}$-bus controller
7.14 Input filters
7.15 RAM access
7.16 Display control
7.17 TEST pin
$8 \quad{ }^{2}$ C-BUS PROTOCOL
8.1 Command decoder

9 CHARACTERISTICS OF THE I²C-BUS
9.1 Bit transfer
9.2 Start and stop conditions
9.3 System configuration
9.4 Acknowledge

10 LIMITING VALUES
11 HANDLING
12 DC CHARACTERISTICS
13 AC CHARACTERISTICS
14 APPLICATION INFORMATION
15 CHIP DIMENSIONS AND BONDING PAD
LOCATIONS
CHIP-ON GLASS INFORMATION
PACKAGE OUTLINE

## 18 SOLDERING

18.1 Introduction
18.2 Reflow soldering
18.3 Wave soldering
18.3.1 LQFP
18.3.2 VSO
18.3.3 Method (LQFP and VSO)
18.4 Repairing soldered joints

19 DEFINITIONS
20 LIFE SUPPORT APPLICATIONS
21 PURCHASE OF PHILIPS ${ }^{2}$ ² COMPONENTS

## LCD row/column driver for dot matrix graphic displays

## 1 FEATURES

- Single chip LCD controller/driver
- Stand-alone or may be used with up to 32 PCF8579s (40960 dots possible)
- 40 driver outputs, configurable as $32 / 8,24 / 16,16 / 24$ or 8/32 rows/columns
- Selectable multiplex rates; $1: 8,1: 16,1: 24$ or $1: 32$
- Externally selectable bias configuration, 5 or 6 levels
- 1280-bit RAM for display data storage and scratch pad
- Display memory bank switching
- Auto-incremented data loading across hardware subaddress boundaries (with PCF8579)
- Provides display synchronization for PCF8579
- On-chip oscillator, requires only 1 external resistor
- Power-on reset blanks display
- Logic voltage supply range 2.5 to 6 V
- Maximum LCD supply voltage 9 V
- Low power consumption
- ${ }^{2} \mathrm{C}$-bus interface
- TTL/CMOS compatible
- Compatible with most microcontrollers
- Optimized pinning for single plane wiring in multiple device applications (with PCF8579)
- Space saving 56-lead plastic mini-pack and 64 pin quad flat pack
- Compatible with chip-on-glass technology.


## 2 APPLICATIONS

- Automotive information systems
- Telecommunication systems
- Point-of-sale terminals
- Computer terminals
- Instrumentation.


## 3 GENERAL DESCRIPTION

The PCF8578 is a low power CMOS LCD row/column driver, designed to drive dot matrix graphic displays at multiplex rates of $1: 8,1: 16,1: 24$ or $1: 32$. The device has 40 outputs, of which 24 are programmable, configurable as $32 / 8,24 / 16,16 / 24$ or $8 / 32$ rows/columns. The PCF8578 can function as a stand-alone LCD controller/driver for use in small systems, or for larger systems can be used in conjunction with up to 32 PCF8579s for which it has been optimized. Together these two devices form a general purpose LCD dot matrix driver chip set, capable of driving displays of up to 40960 dots. The PCF8578 is compatible with most microcontrollers and communicates via a two-line bidirectional bus (I2C-bus). Communication overheads are minimized by a display RAM with auto-incremented addressing and display bank switching.

## 4 ORDERING INFORMATION

| TYPE NUMBER | PACKAGE |  |  |
| :--- | :---: | :--- | :---: |
|  | NAME | DESCRIPTION | VERSION |
| PCF8578T | VSO56 | plastic very small outline package; 56 leads | SOT190-1 |
| PCF8578U/2 | - | chip with bumps in tray | - |
| PCF8578H | LQFP64 | plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$ | SOT314-2 |

LCD row/column driver for dot matrix graphic displays

PCF8578

## 5 BLOCK DIAGRAM



Fig. 1 Block diagram.

## LCD row/column driver for dot matrix graphic displays

## 6 PINNING

| SYMBOL | PIN |  | DESCRIPTION |
| :--- | :---: | :---: | :--- |
|  | VSO56 | LQFP64 |  |
| SDA | 1 | 7 | I $^{2}$ C-bus serial data input/output |
| SCL | 2 | 8 | $I^{2}$ C-bus serial clock input |
| SYNC | 3 | 9 | cascade synchronization output |
| CLK | 4 | 10 | external clock input/output |
| $V_{\text {SS }}$ | 5 | 11 | ground (logic) |
| TEST | 6 | 12 | test pin (connect to $V_{\text {SS }}$ ) |
| SA0 | 7 | 13 | I $^{2}$ C-bus slave address input (bit 0 ) |
| OSC | 8 | 16 | oscillator input |
| $V_{\text {DD }}$ | 9 | 20 | positive supply voltage |
| $V_{2}$ to $V_{5}$ | 10 to 13 | 21 to 24 | LCD bias voltage inputs |
| $V_{\text {LCD }}$ | 14 | 25 | LCD supply voltage |
| n.c. | 15,16 | $14,15,17$ to 19, | not connected |
| C39 to C32 | 17 to 24 | 29 to 35,37 | LCD column driver outputs |
| R31/C31 to R8/C8 | 25 to 48 | 38 to 46,48 to 62 | LCD row/column driver outputs |
| R7 to R0 | 49 to 56 | $63,64,1$ to 6 | LCD row driver outputs |


| $\text { SDA } 1$ | PCF8578 | 56 | Ro |
| :---: | :---: | :---: | :---: |
| SCL 2 |  | 55 | R1 |
| $\overline{\text { SYNC }} 3$ |  | 54 | R2 |
| CLK 4 |  | 53 | R3 |
| $\mathrm{v}_{\text {SS }} 5$ |  | 52 | R4 |
| TESt 6 |  | 51 | R5 |
| SAO 7 |  | 50 | R6 |
| OSC 8 |  | 49 | R7 |
| $\mathrm{V}_{\mathrm{DD}} 9$ |  | 48 | R8/C8 |
| $\mathrm{V}_{2} 10$ |  | 47 | R9/C9 |
| $\mathrm{V}_{3} 11$ |  | 46 | R10/C10 |
| $\mathrm{v}_{4} 12$ |  | 45 | R11/C11 |
| $\mathrm{V}_{5} 13$ |  | 44 | R12/C12 |
| $V_{\text {LCD }} 14$ |  | 43 | R13/C13 |
| n.c. 15 |  | 42 | R14/C14 |
| n.c. 16 |  | 41 | R15/C15 |
| C39 17 |  | 40 | R16/C16 |
| C38 18 |  | 39 | R17/C17 |
| C37 19 |  | 38 | R18/C18 |
| C36 20 |  | 37 | R19/C19 |
| C35 21 |  | 36 | R20/C20 |
| C34 22 |  | 35 | R21/C21 |
| C33 23 |  | 34 | R22/C22 |
| C32 24 |  | 33 | R23/C23 |
| R31/C31 25 |  | 32 | R24/C24 |
| R30/C30 26 |  | 31 | R25/C25 |
| R29/C29 27 |  | 30 | R26/C26 |
| R28/C28 28 |  | 29 | R27/C27 |
|  | MSAB |  |  |

Fig. 2 Pin configuration (VSO56).

LCD row/column driver for dot matrix graphic displays


Fig. 3 Pin configuration (LQFP64).

## LCD row/column driver for dot matrix graphic displays

## PCF8578

## 7 FUNCTIONAL DESCRIPTION

The PCF8578 row/column driver is designed for use in one of three ways:

- Stand-alone row/column driver for small displays (mixed mode)
- Row/column driver with cascaded PCF8579s (mixed mode)
- Row driver with cascaded PCF8579s (mixed mode).


### 7.1 Mixed mode

In mixed mode, the device functions as both a row and column driver. It can be used in small stand-alone applications, or for larger displays with up to 15 PCF8579s (31 PCF8579s when two slave addresses are used). See Table 1 for common display configurations.

### 7.2 Row mode

In row mode, the device functions as a row driver with up to 32 row outputs and provides the clock and synchronization signals for the PCF8579. Up to 16 PCF8579s can normally be cascaded ( 32 when two slave addresses are used).

Timing signals are derived from the on-chip oscillator, whose frequency is determined by the value of the resistor connected between OSC and $\mathrm{V}_{\text {SS }}$.

Commands sent on the $\mathrm{I}^{2} \mathrm{C}$-bus from the host microcontroller set the mode (row or mixed), configuration (multiplex rate and number of rows and columns) and control the operation of the device. The device may have one of two slave addresses. The only difference between these slave addresses is the least significant bit, which is set by the logic level applied to SA0. The PCF8578 and PCF8579 also have subaddresses. The subaddress of the PCF8578 is only defined in mixed mode and is fixed at 0. The RAM may only be accessed in mixed mode and data is loaded as described for the PCF8579.

Bias levels may be generated by an external potential divider with appropriate decoupling capacitors. For large displays, bias sources with high drive capability should be used. A typical mixed mode system operating with up to 15 PCF8579s is shown in Fig. 5 (a stand-alone system would be identical but without the PCF8579s).

Table 1 Possible displays configurations

| APPLICATION | MULTIPLEX RATE | MIXED MODE |  | ROW MODE |  | TYPICAL APPLICATIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ROWS | COLUMNS | ROWS | COLUMNS |  |
| Stand alone | 1:8 | 8 | 32 | - | - | small digital or alphanumerical displays |
|  | 1:16 | 16 | 24 | - | - |  |
|  | 1:24 | 24 | 16 | - | - |  |
|  | 1:32 | 32 | 8 | - | - |  |
| With PCF8579 | 1:8 | $8^{(1)}$ | $632^{(1)}$ | $8 \times 44^{(2)}$ | 640 ${ }^{(2)}$ | alphanumeric displays and dot matrix graphic displays |
|  | 1:16 | $16{ }^{(1)}$ | $624^{(1)}$ | $16 \times 2^{(2)}$ | $640^{(2)}$ |  |
|  | 1:24 | $24^{(1)}$ | 616 ${ }^{(1)}$ | $24^{(2)}$ | $640^{(2)}$ |  |
|  | 1:32 | $32^{(1)}$ | $608{ }^{(1)}$ | $24{ }^{(2)}$ | 640 ${ }^{(2)}$ |  |

## Notes

1. Using 15 PCF8579s.
2. Using 16 PCF8579s.

## LCD row/column driver for dot matrix graphic displays

### 7.3 Multiplexed LCD bias generation

The bias levels required to produce maximum contrast depend on the multiplex rate and the LCD threshold voltage $\left(\mathrm{V}_{\text {th }}\right)$. $\mathrm{V}_{\text {th }}$ is typically defined as the RMS voltage at which the LCD exhibits $10 \%$ contrast. Table 2 shows the optimum voltage bias levels for the PCF8578 as functions of $\mathrm{V}_{\mathrm{op}}\left(\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$, together with the discrimination ratios (D) for the different multiplex rates. A practical value for $\mathrm{V}_{\text {op }}$ is obtained by equating $\mathrm{V}_{\text {off }}(\mathrm{rms})$ with $\mathrm{V}_{\text {th }}$. Figure 4 shows the first 4 rows of Table 2 as graphs. Table 3 shows the relative values of the resistors required in the configuration of Fig. 5 to produce the standard multiplex rates.

Table 2 Optimum LCD voltages

| PARAMETER | MULTIPLEX RATE |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1:8 | 1:16 | 1:24 | 1:32 |
| $\frac{V_{2}}{V_{\text {op }}}$ | 0.739 | 0.800 | 0.830 | 0.850 |
| $\frac{V_{3}}{V_{\text {op }}}$ | 0.522 | 0.600 | 0.661 | 0.700 |
| $\frac{V_{4}}{V_{\text {op }}}$ | 0.478 | 0.400 | 0.339 | 0.300 |
| $\frac{V_{5}}{V_{\text {op }}}$ | 0.261 | 0.200 | 0.170 | 0.150 |
| $\frac{\mathrm{V}_{\mathrm{off}(\mathrm{rms})}}{\mathrm{V}_{\mathrm{op}}}$ | 0.297 | 0.245 | 0.214 | 0.193 |
| $\frac{V_{o n(r m s)}}{V_{o p}}$ | 0.430 | 0.316 | 0.263 | 0.230 |
| $D=\frac{V_{\text {on (rms) }}}{\mathrm{V}_{\mathrm{off}(\mathrm{rms})}}$ | 1.447 | 1.291 | 1.230 | 1.196 |
| $\frac{V_{\text {op }}}{V_{\text {th }}}$ | 3.370 | 4.080 | 4.680 | 5.190 |

Table 3 Multiplex rates and resistor values for Fig. 5

| RESISTORS | MULTIPLEX RATE ( $\mathbf{n}$ ) |  |
| :---: | :---: | :---: |
|  | $\mathbf{n = 8}$ | $\mathbf{n = 1 6 , \mathbf { 2 4 , 3 2 }}$ |
| $R 1$ | $R$ | $R$ |
| $R 2$ | $(\sqrt{\mathrm{n}-2}) R$ | $R$ |
| $R 3$ | $(3-\sqrt{\mathrm{n}}) R$ | $(\sqrt{\mathrm{n}-3}) R$ |

### 7.4 Power-on reset

At power-on the PCF8578 resets to a defined starting condition as follows:

1. Display blank
2. $1: 32$ multiplex rate, row mode
3. Start bank, 0 selected
4. Data pointer is set to $\mathrm{X}, \mathrm{Y}$ address 0,0
5. Character mode
6. Subaddress counter is set to 0
7. $\mathrm{I}^{2} \mathrm{C}$-bus interface is initialized.

Data transfers on the $\mathrm{I}^{2} \mathrm{C}$-bus should be avoided for 1 ms following power-on, to allow completion of the reset action.



LCD row/column driver for dot matrix graphic displays

PCF8578



$$
\begin{array}{ll}
\mathrm{V}_{\text {state } 1}(\mathrm{t})=\mathrm{C} 1(\mathrm{t})-\mathrm{R} 1(\mathrm{t}): & \text { general relationship }(\mathrm{n}=\text { multiplex rate }) \\
\frac{V_{o n(r m s)}}{V_{o p}}=\sqrt{\frac{1}{8}+\frac{\sqrt{8}-1}{8(\sqrt{8}+1)}}=0.430 & \frac{V_{o n(r m s)}}{V_{o p}}=\sqrt{\frac{1}{n}+\frac{\sqrt{n}-1}{n(\sqrt{n}+1)}} \\
\mathrm{V}_{\text {state } 2}(\mathrm{t})=\mathrm{C} 2(\mathrm{t})-\mathrm{R} 2(\mathrm{t}): & \frac{V_{o f f(r m s)}}{V_{o p}}=\sqrt{\frac{2(\sqrt{n-1)}}{\sqrt{n}(\sqrt{n}+1)^{2}}} \\
\frac{V_{\text {off }(r m s)}}{V_{o p}}=\sqrt{\frac{2(\sqrt{8}-1)}{\sqrt{8}(\sqrt{8}+1)^{2}}}=0.297 &
\end{array}
$$

Fig. 7 LCD drive mode waveforms for $1: 8$ multiplex rate.

LCD row/column driver for dot matrix graphic displays

PCF8578


Fig. 8 LCD drive mode waveforms for 1:16 multiplex rate.

## LCD row/column driver for dot matrix graphic displays

## PCF8578

### 7.5 Internal clock

The clock signal for the system may be generated by the internal oscillator and prescaler. The frequency is determined by the value of the resistor $\mathrm{R}_{\mathrm{OSC}}$, see Fig.9. For normal use a value of $330 \mathrm{k} \Omega$ is recommended.
The clock signal, for cascaded PCF8579s, is output at CLK and has a frequency $1 / 6$ (multiplex rate $1: 8,1: 16$ and $1: 32$ ) or $1 / 8$ (multiplex rate $1: 24$ ) of the oscillator frequency.


To avoid capacitive coupling, which could adversely affect oscillator stability, R ROSC should be placed as closely as possible to the OSC pin. If this proves to be a problem, a filtering capacitor may be connected in parallel to Rosc.

Fig. 9 Oscillator frequency as a function of external oscillator resistor, Rosc.

### 7.6 External clock

If an external clock is used, OSC must be connected to $\mathrm{V}_{\mathrm{DD}}$ and the external clock signal to CLK. Table 4 summarizes the nominal CLK and SYNC frequencies.

### 7.7 Timing generator

The timing generator of the PCF8578 organizes the internal data flow of the device and generates the LCD frame synchronization pulse $\overline{\text { SYNC, whose period is an }}$ integer multiple of the clock period. In cascaded applications, this signal maintains the correct timing relationship between the PCF8578 and PCF8579s in the system.

### 7.8 Row/column drivers

Outputs R0 to R7 and C32 to C39 are fixed as row and column drivers respectively. The remaining 24 outputs R8/C8 to R31/C31 are programmable and may be configured (in blocks of 8) to be either row or column drivers. The row select signal is produced sequentially at each output from R0 up to the number defined by the multiplex rate (see Table 1). In mixed mode the remaining outputs are configured as columns. In row mode all programmable outputs (R8/C8 to R31/C31) are defined as row drivers and the outputs C32 to C39 should be left open-circuit.

Using a 1 : 16 multiplex rate, two sets of row outputs are driven, thus facilitating split-screen configurations, i.e. a row select pulse appears simultaneously at R0 and R16/C16, R1 and R17/C17 etc. Similarly, using a multiplex rate of $1: 8$, four sets of row outputs are driven simultaneously. Driver outputs must be connected directly to the LCD. Unused outputs should be left open-circuit. In 1 : 8 R0 to R7 are rows; in $1: 16$ R0 to R15/C15 are rows; in $1: 24$ R0 to R23/C23 are rows; in $1: 32$ R0 to R31/C31 are rows.

Table 4 Signal frequencies required for nominal 64 Hz frame frequency; note 1.

| OSCILLATOR <br> FREQUENCY <br> $\mathbf{f O S c}^{(2)} \mathbf{( H z )}$ | FRAME FREQUENCY <br> $\mathbf{f} \overline{\mathbf{S Y N C}} \mathbf{( H z )}$ | MULTIPLEX RATE (n) | DIVISION <br> RATIO | CLOCK FREQUENCY <br> $\mathbf{f}_{\mathbf{C L K}}(\mathbf{H z )}$ |
| :---: | :---: | :---: | :---: | :---: |
| 12288 | 64 | $1: 8,1: 16,1: 32$ | 6 | 2048 |
| 12288 | 64 | $1: 24$ | 8 | 1536 |

## Notes

1. A clock signal must always be present, otherwise the LCD may be frozen in a DC state.
2. $\mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega$.

## LCD row/column driver for dot matrix graphic displays

### 7.9 Display mode controller

The configuration of the outputs (row or column) and the selection of the appropriate driver waveforms are controlled by the display mode controller.

### 7.10 Display RAM

The PCF8578 contains a $32 \times 40$-bit static RAM which stores the display data. The RAM is divided into 4 banks of 40 bytes ( $4 \times 8 \times 40$ bits). During RAM access, data is transferred to/from the RAM via the $\mathrm{I}^{2} \mathrm{C}$-bus. The first eight columns of data ( 0 to 7 ) cannot be displayed but are available for general data storage and provide compatibility with the PCF8579. There is a direct correspondence between X-address and column output number.

### 7.11 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows an individual data byte or a series of data bytes to be written into, or read from, the display RAM, controlled by commands sent on the $\mathrm{I}^{2} \mathrm{C}$-bus.

### 7.12 Subaddress counter

The storage and retrieval of display data is dependent on the content of the subaddress counter. Storage takes place only when the contents of the subaddress counter agree with the hardware subaddress. The hardware subaddress of the PCF8578, valid in mixed mode only, is fixed at 0000.

## $7.13 \quad I^{2} \mathrm{C}$-bus controller

The $\mathrm{I}^{2} \mathrm{C}$-bus controller detects the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, slave address, commands and display data bytes. It performs the conversion of the data input (serial-to-parallel) and the data output (parallel-to-serial). The PCF8578 acts as an ${ }^{2} \mathrm{C}$-bus slave transmitter/receiver in mixed mode, and as a slave receiver in row mode. A slave device cannot control bus communication.

### 7.14 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

### 7.15 RAM access

RAM operations are only possible when the PCF8578 is in mixed mode.

In this event its hardware subaddress is internally fixed at 0000 and the hardware subaddresses of any PCF8579 used in conjunction with the PCF8578 must start at 0001.

There are three RAM ACCESS modes:

- Character
- Half-graphic
- Full-graphic.

These modes are specified by bits G1 to G0 of the RAM ACCESS command. The RAM ACCESS command controls the order in which data is written to or read from the RAM (see Fig.10).

To store RAM data, the user specifies the location into which the first byte will be loaded (see Fig.11):

- Device subaddress (specified by the DEVICE SELECT command)
- RAM X-address (specified by the LOAD X-ADDRESS command)
- RAM bank (specified by bits Y1 and Y0 of the RAM ACCESS command).

Subsequent data bytes will be written or read according to the chosen RAM ACCESS mode. Device subaddresses are automatically incremented between devices until the last device is reached. If the last device has
subaddress 15 , further display data transfers will lead to a wrap-around of the subaddress to 0 .

### 7.16 Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs. The number of rows scanned depends on the multiplex rate set by bits M1 and M0 of the SET MODE command.

The display status (all dots on/off and normal/inverse video) is set by bits E1 and E0 of the SET MODE command. For bank switching, the RAM bank corresponding to the top of the display is set by bits B1 and B0 of the SET START BANK command. This is shown in Fig.12. This feature is useful when scrolling in alphanumeric applications.

### 7.17 TEST pin

The TEST pin must be connected to $\mathrm{V}_{\text {SS }}$.

Fig. 10 RAM ACCESS mode
80 des 866 ।



Fig. 11 Example of commands specifying initial data byte RAM locations.

LCD row/column driver for dot matrix graphic displays


Fig. 12 Relationship between display and SET START BANK; 1:32 multiplex rate and start bank $=2$.

## LCD row/column driver for dot matrix graphic displays

## PCF8578

## $8 \quad \mathrm{I}^{2} \mathrm{C}$-BUS PROTOCOL

Two 7-bit slave addresses (0111100 and 0111101) are reserved for both the PCF8578 and PCF8579. The least significant bit of the slave address is set by connecting input SA0 to either $0\left(\mathrm{~V}_{\mathrm{SS}}\right)$ or $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$. Therefore, two types of PCF8578 or PCF8579 can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus which allows:

1. One PCF8578 to operate with up to 32 PCF8579s on the same $\mathrm{I}^{2} \mathrm{C}$-bus for very large applications
2. The use of two types of LCD multiplex schemes on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

In most applications the PCF8578 will have the same slave address as the PCF8579.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig. 13.
All communications are initiated with a start condition (S) from the $\mathrm{I}^{2} \mathrm{C}$-bus master, which is followed by the desired slave address and read/write bit. All devices with this slave address acknowledge in parallel. All other devices ignore the bus transfer.

In WRITE mode (indicated by setting the read/write bit LOW) one or more commands follow the slave address acknowledgement. The commands are also acknowledged by all addressed devices on the bus. The last command must clear the continuation bit C . After the last command a series of data bytes may follow. The acknowledgement after each byte is made only by the (A0, A1, A2 and A3) addressed PCF8579 or PCF8578 with its implicit subaddress 0 . After the last data byte has been acknowledged, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a stop condition (P).

In READ mode, indicated by setting the read/write bit HIGH, data bytes may be read from the RAM following the slave address acknowledgement. After this acknowledgement the master transmitter becomes a master receiver and the PCF8578 becomes a slave transmitter. The master receiver must acknowledge the reception of each byte in turn. The master receiver must signal an end of data to the slave transmitter, by not generating an acknowledge on the last byte clocked out of the slave. The slave transmitter then leaves the data line HIGH, enabling the master to generate a stop condition (P).

Display bytes are written into, or read from, the RAM at the address specified by the data pointer and subaddress counter. Both the data pointer and subaddress counter are automatically incremented, enabling a stream of data to be transferred either to, or from, the intended devices.

In multiple device applications, the hardware subaddress pins of the PCF8579s (A0 to A3) are connected to $\mathrm{V}_{\mathrm{SS}}$ or $V_{D D}$ to represent the desired hardware subaddress code. If two or more devices share the same slave address, then each device must be allocated a unique hardware subaddress.

LCD row/column driver for dot matrix graphic displays


Fig. 13 (a) Master transmits to slave receiver (WRITE mode); (b) Master reads after sending command string (WRITE commands; READ data); (c) Master reads slave immediately after sending slave address (READ mode).

## LCD row/column driver for dot matrix graphic displays

### 8.1 Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. The most-significant bit of a command is the continuation bit C (see Fig.14). When this bit is set, it indicates that the next byte to be transferred will also be a command. If the bit is reset, it indicates the conclusion of the command transfer. Further bytes will be regarded as display data. Commands are transferred in WRITE mode only.

The five commands available to the PCF8578 are defined in Tables 5 and 6.

$\mathrm{C}=0$; last command.
$C=1$; commands continue.
Fig. 14 General information of command byte.

Table 5 Summary of commands

| COMMAND | OPCODE $^{(1)}$ |  |  |  |  |  | DESCRIPTION |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SET MODE | C | 1 | 0 | D | D | D | D | D | multiplex rate, display status, system type |
| SET START BANK | C | 1 | 1 | 1 | 1 | 1 | D | D | defines bank at top of LCD |
| DEVICE SELECT | C | 1 | 1 | 0 | D | D | D | D | defines device subaddress |
| RAM ACCESS | C | 1 | 1 | 1 | D | D | D | D | graphic mode, bank select (D D D D $\geq 12$ is not <br> allowed; see SET START BANK opcode) |
| LOAD X-ADDRESS | C | 0 | D | D | D | D | D | D | 0 to 39 |

## Note

1. $\mathrm{C}=$ command continuation bit. $\mathrm{D}=$ may be a logic 1 or 0 .

## LCD row/column driver for dot matrix graphic displays

Table 6 Definition of PCF8578/PCF8579 commands

| COMMAND | OPCODE |  |  |  |  |  |  |  |  | OPTIONS | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SET MODE | C |  | 1 | 0 | T | E1 E0 M |  | 1 M |  | see Table 7 | defines LCD drive mode |
|  |  |  |  |  |  |  |  | see Table 8 | defines display status |
|  |  |  |  |  |  |  |  | see Table 9 | defines system type |
| SET START BANK | C |  | 1 | 1 | 1 | 1 | 1 |  |  | B1 | B0 | see Table 10 | defines pointer to RAM bank corresponding to the top of the LCD; useful for scrolling, pseudo-motion and background preparation of new display |
| DEVICE SELECT | C |  | 1 | 1 | 0 | A3 | A2 A |  |  | A1 | A0 | see Table 11 | four bits of immediate data, bits A0 to A3, are transferred to the subaddress counter to define one of sixteen hardware subaddresses |
| RAM ACCESS | C |  | 1 | 1 | 1 | G1 | G0 Y | Y1 | YO | see Table 12 | defines the auto-increment behaviour of the address for RAM access |
|  |  |  |  |  |  |  |  |  |  | see Table 13 | two bits of immediate data, bits Y0 to Y 1 , are transferred to the X -address pointer to define one of forty display RAM columns |
| LOAD X-ADDRESS | C |  | 0 | X5 | X4 | X3 | X2 X | X1 | X0 | see Table 14 | six bits of immediate data, bits X0 to X 5 , are transferred to the X-address pointer to define one of forty display RAM columns |

## LCD row/column driver for dot matrix graphic displays

PCF8578

Table 7 Set mode option 1

| LCD DRIVE MODE | BITS |  |  |
| :--- | :--- | :---: | :---: |
|  | M1 | M0 |  |
| $1: 8$ | MUX ( 8 rows) | 0 | 1 |
| $1: 16$ | MUX (16 rows) | 1 | 0 |
| $1: 24$ | MUX (24 rows) | 1 | 1 |
| $1: 32$ | MUX (32 rows) | 0 | 0 |

Table 8 Set mode option 2

| DISPLAY STATUS | BITS |  |
| :--- | :---: | :---: |
|  | E1 | E0 |
| Blank | 0 | 0 |
| Normal | 0 | 1 |
| All segments on | 1 | 0 |
| Inverse video | 1 | 1 |

Table 9 Set mode option 3

| SYSTEM TYPE | BIT T |
| :--- | :---: |
| PCF8578 row only | 0 |
| PCF8578 mixed mode | 1 |

Table 10 Set start bank option 1

| START BANK POINTER | BITS |  |
| :--- | :---: | :---: |
|  | B1 | B0 |
| Bank 0 | 0 | 0 |
| Bank 1 | 0 | 1 |
| Bank 2 | 1 | 0 |
| Bank 3 | 1 | 1 |

Table 11 Device select option 1

| DESCRIPTION | BITS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Decimal value 0 to 15 | A3 | A2 | A1 | A0 |

Table 12 RAM access option 1

| RAM ACCESS MODE | BITS |  |
| :--- | :---: | :---: |
|  | G1 | G0 |
| Character | 0 | 0 |
| Half-graphic | 0 | 1 |
| Full-graphic | 1 | 0 |
| Not allowed (note 1) | 1 | 1 |

## Note

1. See opcode for SET START BANK in Table 6.

Table 13 Device select option 1

| DESCRIPTION | BITS |  |
| :---: | :---: | :---: |
| Decimal value 0 to 3 | Y 1 | Y 0 |

Table 14 Device select option 1

| DESCRIPTION |  | BITS |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Decimal value 0 to 39 | X 5 | X 4 | X 3 | X 2 | X 1 | X 0 |

## LCD row/column driver for dot matrix graphic displays

## PCF8578

## 9 CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL) which must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

### 9.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this moment will be interpreted as control signals.

### 9.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the STOP condition (P).

### 9.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal the end of a data transmission to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

### 9.3 System configuration

A device transmitting a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message flow is the 'master' and the devices which are controlled by the master are the 'slaves'.


Fig. 15 Bit transfer.

LCD row/column driver for dot matrix graphic displays


Fig. 16 Definition of start and stop condition.


## LCD row/column driver for dot matrix graphic displays

## 10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | MIN. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | supply voltage | -0.5 | +8.0 | V |
| $\mathrm{V}_{\text {LCD }}$ | LCD supply voltage | $V_{D D}-11$ | $V_{D D}$ | V |
| $V_{11}$ | input voltage SDA, SCL, CLK, TEST, SA0 and OSC | $\mathrm{V}_{\text {SS }}-0.5$ | $V_{D D}+0.5$ | V |
| $\mathrm{V}_{12}$ | input voltage $\mathrm{V}_{2}$ to $\mathrm{V}_{5}$ | $\mathrm{V}_{\text {LCD }}-0.5$ | $V_{D D}+0.5$ | V |
| $\mathrm{V}_{01}$ | output voltage $\overline{\text { SYNC }}$ and CLK | $\mathrm{V}_{S S}-0.5$ | $V_{D D}+0.5$ | V |
| $\mathrm{V}_{02}$ | output voltage R0 to R7, R8/C8 to R31/C31 and C32 to C39 | $\mathrm{V}_{\text {LCD }}-0.5$ | $V_{D D}+0.5$ | V |
| $l_{1}$ | DC input current | -10 | +10 | mA |
| $\mathrm{I}_{0}$ | DC output current | -10 | +10 | mA |
| $\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\text {SS }}, \mathrm{I}_{\text {LCD }}$ | $\mathrm{V}_{\mathrm{DD}}$, $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {LCD }}$ current | -50 | +50 | mA |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation per package | - | 400 | mW |
| $\mathrm{P}_{0}$ | power dissipation per output | - | 100 | mW |
| $\mathrm{T}_{\text {stg }}$ | storage temperature | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |

## 11 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

## LCD row/column driver for dot matrix graphic displays

## PCF8578

## 12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplies |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{DD}}$ | supply voltage |  | 2.5 | - | 6.0 | V |
| $\mathrm{V}_{\text {LCD }}$ | LCD supply voltage |  | $\mathrm{V}_{\mathrm{DD}}-9$ | - | $\mathrm{V}_{\mathrm{DD}}-3.5$ | V |
| $\mathrm{I}_{\text {DD1 }}$ | supply current external clock | $\mathrm{f}_{\text {cLK }}=2 \mathrm{kHz}$; note 1 | - | 6 | 15 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {DD2 }}$ | supply current internal clock | $\mathrm{R}_{\text {OSC }}=330 \mathrm{k} \Omega$ | - | 20 | 50 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{POR}}$ | power-on reset level | note 2 | 0.8 | 1.3 | 1.8 | V |
| Logic |  |  |  |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | LOW level input voltage |  | $\mathrm{V}_{\text {SS }}$ | - | $0.3 V_{\text {DD }}$ | V |
| $\mathrm{V}_{\text {IH }}$ | HIGH level input voltage |  | $0.7 \mathrm{~V}_{\mathrm{DD}}$ | - | $\mathrm{V}_{\mathrm{DD}}$ | V |
| $\mathrm{l}_{\text {OL1 }}$ | LOW level output current at $\overline{\text { SYNC }}$ and CLK | $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ | 1 | - | - | mA |
| IOH | HIGH level output current at $\overline{\text { SYNC }}$ and CLK | $\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ | - | - | -1 | mA |
| loL2 | LOW level output current at SDA | $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ | 3 | - | - | mA |
| $\mathrm{L}_{\mathrm{L} 1}$ | leakage current at SDA, SCL, $\overline{\text { SYNC, }}$ CLK, TEST and SAO | $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$ | - | - | +1 | mA |
| $\mathrm{I}_{\mathrm{L} 2}$ | leakage current at OSC | $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ | - | - | +1 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{i}}$ | input capacitance at SCL and SDA | note 3 | - | - | 5 | pF |
| LCD outputs |  |  |  |  |  |  |
| l ${ }_{\text {L3 }}$ | leakage current at $\mathrm{V}_{2}$ to $\mathrm{V}_{5}$ | $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {LCD }}$ | -2 | - | +2 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{DC}}$ | DC component of LCD drivers R0 to R7, R8/C8 to R31/C31 and C32 to C39 |  | - | $\pm 20$ | - | mV |
| R ROW | output resistance R0 to R7 and R8/C8 to R31/C31 | row mode; note 4 | - | 1.5 | 3 | k $\Omega$ |
| $\mathrm{R}_{\mathrm{COL}}$ | output resistance R8/C8 to R31/C31 and C32 to C39 | column mode; note 4 | - | 3 | 6 | $\mathrm{k} \Omega$ |

## Notes

1. Outputs are open; inputs at $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}} ;{ }^{2} \mathrm{C}$-bus inactive; external clock with $50 \%$ duty factor.
2. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
3. Periodically sampled; not $100 \%$ tested.
4. Resistance measured between output terminal (R0 to R7, R8/C8 to R31/C31 and C32 to C39) and bias input ( $\mathrm{V}_{2}$ to $\mathrm{V}_{5}, \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{LCD}}$ ) when the specified current flows through one output under the following conditions (see Table 2):
a) $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$.
b) Row mode, R0 to R7 and R8/C8 to R31/C31: $\mathrm{V}_{2}-\mathrm{V}_{\mathrm{LCD}} \geq 6.65 \mathrm{~V} ; \mathrm{V}_{5}-\mathrm{V}_{\mathrm{LCD}} \leq 2.35 \mathrm{~V}$; I $\mathrm{LOAD}=150 \mu \mathrm{~A}$.
c) Column mode, R8/C8 to R31/C31 and C32 to C39: $\mathrm{V}_{3}-\mathrm{V}_{\mathrm{LCD}} \geq 4.70 \mathrm{~V}$; $\mathrm{V}_{4}-\mathrm{V}_{\mathrm{LCD}} \leq 4.30 \mathrm{~V}$; $\mathrm{I}_{\mathrm{LOAD}}=100 \mu \mathrm{~A}$.

## LCD row/column driver for dot matrix graphic displays

PCF8578

## 13 AC CHARACTERISTICS

All timing values are referenced to $\mathrm{V}_{I H}$ and $\mathrm{V}_{\mathrm{IL}}$ levels with an input voltage swing of $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD}}$.
$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {CLK1 }}$ | clock frequency at multiplex rates of $1: 8,1: 16$ and $1: 32$ | $\mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k}$; $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$ | 1.2 | 2.1 | 3.3 | kHz |
| $\mathrm{f}_{\text {CLK2 }}$ | clock frequency at multiplex rates of $1: 24$ | $\mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k}$; $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$ | 0.9 | 1.6 | 2.5 | kHz |
| tpsync | $\overline{\text { SYNC propagation delay }}$ |  | - | - | 500 | ns |
| tPLCD | driver delays | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V} ;$ with test loads | - | - | 100 | $\mu \mathrm{S}$ |
| $\mathrm{I}^{2} \mathrm{C}$-bus |  |  |  |  |  |  |
| $\mathrm{f}_{\text {SCL }}$ | SCL clock frequency |  | - | - | 100 | kHz |
| $t_{\text {Sw }}$ | tolerable spike width on bus |  | - | - | 100 | ns |
| $\mathrm{t}_{\text {BUF }}$ | bus free time |  | 4.7 | - | - | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {SU; }}$ STA | start condition set-up time | repeated start codes only | 4.7 | - | - | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {HD; }}$ STA | start condition hold time |  | 4.0 | 4.0 | - | $\mu \mathrm{s}$ |
| t Low | SCL LOW time |  | 4.7 | - | - | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {HIGH }}$ | SCL HIGH time |  | 4.0 | - | - | $\mu \mathrm{s}$ |
| $\mathrm{tr}_{\mathrm{r}}$ | SCL and SDA rise time |  | - | - | 1 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\mathrm{f}}$ | SCL and SDA fall time |  | - | - | 0.3 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {SU; }}$ | data set-up time |  | 250 | - | - | ns |
| thd;DAT | data hold time |  | 0 | - | - | ns |
| tsu;sto | stop condition set-up time |  | 4.0 | - | - | $\mu \mathrm{s}$ |



LCD row/column driver for dot matrix graphic displays


Fig. 20 Driver timing waveforms.


Fig. $21 \mathrm{I}^{2} \mathrm{C}$-bus timing waveforms.


$\stackrel{\sim}{\sim}$
80 des 8661


| - | sKejds!p ग!чdeı6 |
| :---: | :---: |
| 98コJd |  |


Fig. 25 Split screen application with 1: 16 multiplex rate for improved contrast

80 dəs 8661
-


| 8L98JOd | sKejds!p э!чdeлб |
| :---: | :---: |
|  |  |

Fig. 27 Example of single plane wiring, single screen with 1:32 multiplex rate (PCF8578 in row driver mode).

## LCD row/column driver for dot matrix graphic displays

## 15 CHIP DIMENSIONS AND BONDING PAD LOCATIONS



Chip area: $14.93 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$.
The numbers given in the small squares refer to the pad numbers.
Fig. 28 Bonding pad locations.

## LCD row/column driver for dot matrix graphic displays

Table 15 Bonding pad locations (dimensions in $\mu \mathrm{m}$ )
All x/y coordinates are referenced to centre of chip, see Fig.28.

| PAD NUMBER | SYMBOL | x | y | PINS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | VSO56 | LQFP64 |
| 1 | SDA | 174 | 2241 | 1 | 7 |
| 2 | SCL | -30 | 2241 | 2 | 8 |
| 3 | $\overline{\text { SYNC }}$ | -234 | 2241 | 3 | 9 |
| 4 | CLK | -468 | 2241 | 4 | 10 |
| 5 | $V_{\text {SS }}$ | -726 | 2241 | 5 | 11 |
| 6 | TEST | -1014 | 2241 | 6 | 12 |
| 7 | SA0 | -1308 | 2241 | 7 | 13 |
| 8 | OSC | -1308 | 1917 | 8 | 16 |
| 9 | $V_{D D}$ | -1308 | 1113 | 9 | 20 |
| 10 | $\mathrm{V}_{2}$ | -1308 | 873 | 10 | 21 |
| 11 | $V_{3}$ | -1308 | 663 | 11 | 22 |
| 12 | $V_{4}$ | -1308 | 459 | 12 | 23 |
| 13 | $\mathrm{V}_{5}$ | -1308 | 255 | 13 | 24 |
| 14 | $\mathrm{V}_{\text {LCD }}$ | -1308 | 51 | 14 | 25 |
| 15 | C39 | -1308 | -1149 | 17 | 29 |
| 16 | C38 | -1308 | -1353 | 18 | 30 |
| 17 | C37 | -1308 | -1557 | 19 | 31 |
| 18 | C36 | -1308 | -1773 | 20 | 32 |
| 19 | C35 | -1308 | -1995 | 21 | 33 |
| 20 | C34 | -1308 | -2241 | 22 | 34 |
| 21 | C33 | -1014 | -2241 | 23 | 35 |
| 22 | C32 | -726 | -2241 | 24 | 37 |
| 23 | R31/C31 | -468 | -2241 | 25 | 38 |
| 24 | R30/C30 | -234 | -2241 | 26 | 39 |
| 25 | R29/C29 | -30 | -2241 | 27 | 40 |
| 26 | R28/C28 | 174 | -2241 | 28 | 41 |
| 27 | R27/C27 | 468 | -2241 | 29 | 42 |
| 28 | R26/C26 | 672 | -2241 | 30 | 43 |
| 29 | R25/C25 | 876 | -2241 | 31 | 44 |
| 30 | R24/C24 | 1080 | -2241 | 32 | 45 |
| 31 | R23/C23 | 1308 | -2241 | 33 | 46 |
| 32 | R22/C22 | 1308 | -1977 | 34 | 48 |
| 33 | R21/C21 | 1308 | -1731 | 35 | 49 |
| 34 | R20/C20 | 1308 | -1515 | 36 | 50 |
| 35 | R19/C19 | 1308 | -1305 | 37 | 51 |
| 36 | R18/C18 | 1308 | -1101 | 38 | 52 |
| 37 | R17/C17 | 1308 | -897 | 39 | 53 |

LCD row/column driver for dot matrix graphic displays

PCF8578

| PAD NUMBER | SYMBOL | x | y | PINS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | VSO56 | LQFP64 |
| 38 | R16/C16 | 1308 | -693 | 40 | 54 |
| 39 | R15/C15 | 1308 | -489 | 41 | 55 |
| 40 | R14/C14 | 1308 | -285 | 42 | 56 |
| 41 | R13/C13 | 1308 | -81 | 43 | 57 |
| 42 | R12/C12 | 1308 | 123 | 44 | 58 |
| 43 | R11/C11 | 1308 | 351 | 45 | 59 |
| 44 | R10/C10 | 1308 | 603 | 46 | 60 |
| 45 | R9/C9 | 1308 | 1101 | 47 | 61 |
| 46 | R8/C8 | 1308 | 1305 | 48 | 62 |
| 47 | R7 | 1308 | 1515 | 49 | 63 |
| 48 | R6 | 1308 | 1731 | 50 | 64 |
| 49 | R5 | 1308 | 1977 | 51 | 1 |
| 50 | R4 | 1308 | 2241 | 52 | 2 |
| 51 | R3 | 1080 | 2241 | 53 | 3 |
| 52 | R2 | 876 | 2241 | 54 | 4 |
| 53 | R1 | 672 | 2241 | 55 | 5 |
| 54 | R0 | 468 | 2241 | 56 | 6 |
| - | n.c. | - | - | 15, 16 | 14, 15, 17 to 19 , 26 to $28,36,47$ |


Fig. 29 Typical chip-on glass application (viewed from the underside of the chip).

[^0]
## LCD row/column driver for dot matrix graphic displays

## 17 PACKAGE OUTLINES

VSO56: plastic very small outline package; 56 leads
SOT190-1


DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A max. | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $\mathrm{D}^{(1)}$ | $E^{(2)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $\mathbf{Z}^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 3.3 | $\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.42 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.14 \end{aligned}$ | $\begin{aligned} & 21.65 \\ & 21.35 \end{aligned}$ | $\begin{aligned} & 11.1 \\ & 11.0 \end{aligned}$ | 0.75 | $\begin{aligned} & 15.8 \\ & 15.2 \end{aligned}$ | 2.25 | $\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1.30 \end{aligned}$ | 0.2 | 0.1 | 0.1 | $\begin{aligned} & 0.90 \\ & 0.55 \end{aligned}$ | $7^{\circ}$ |
| inches | 0.13 | $\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.12 \\ & 0.11 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.017 \\ & 0.012 \end{aligned}$ | $\left.\begin{array}{\|c\|} 0.0087 \\ 0.0055 \end{array} \right\rvert\,$ | $\begin{aligned} & 0.85 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.43 \end{aligned}$ | 0.0295 | $\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$ | 0.089 | $\begin{aligned} & 0.063 \\ & 0.055 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 0.051 \end{aligned}$ | 0.008 | 0.004 | 0.004 | $\begin{aligned} & 0.035 \\ & 0.022 \end{aligned}$ | $0^{\circ}$ |

Note

1. Plastic or metal protrusions of 0.3 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT190-1 |  |  |  |  | - | $96-04-02$ |

LCD row/column driver for dot matrix graphic displays


DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(\mathbf{1})}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{D}}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}_{\mathbf{D}} \mathbf{( 1 )}^{(1)}$ | $\mathbf{Z}_{\mathbf{E}}^{(\mathbf{1 )}}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.60 | 0.20 | 1.45 | 0.25 | 0.27 | 0.18 | 10.1 | 10.1 | 0.0 |  |  |  |  |  |  |  |  |  |  |
| 0.05 | 1.35 | 0.17 | 0.12 | 9.9 | 9.9 | 0.5 | 11.85 | 12.15 | 11.85 | 1.0 | 0.75 | 0.2 | 0.12 | 0.1 | 1.45 | 1.45 | $7^{0}$ |  |  |
| 1.05 | 1.05 | $0^{\circ}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT314-2 |  |  |  | $\square \bigcirc$ | $\begin{aligned} & 95-12-19 \\ & 97-08-01 \end{aligned}$ |

## LCD row/column driver for dot matrix graphic displays

## PCF8578

## 18 SOLDERING

### 18.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

### 18.2 Reflow soldering

Reflow soldering techniques are suitable for all LQFP and VSO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$.

### 18.3 Wave soldering

### 18.3.1 LQFP

Wave soldering is not recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

| CAUTION |
| :--- |
| Wave soldering is NOT applicable for all LQFP <br> packages with a pitch (e) equal or less than 0.5 mm. |

## If wave soldering cannot be avoided, for LQFP packages with a pitch (e) larger than 0.5 mm , the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of $45^{\circ}$ to the board direction and must incorporate solder thieves downstream and at the side corners.


### 18.3.2 VSO

Wave soldering techniques can be used for all VSO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.


### 18.3.3 METHOD (LQFP and VSO)

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

### 18.4 Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V ) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

# LCD row/column driver for dot matrix graphic displays 

## 19 DEFINITIONS

| Data sheet status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of this specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |
| Application information |  |
| Where application information is given, it is advisory and does not form part of the specification. |  |

## 20 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

## 21 PURCHASE OF PHILIPS $\mathbf{I}^{2} \mathrm{C}$ COMPONENTS



Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' ${ }^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $I^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

# Philips Semiconductors - a worldwide company 

## Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +453288 2636, Fax. +4531570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 8002347381

Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SAO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS


[^0]:    NOII甘WYOANI SSV7פ NO-diHO 91
    

