DATA SHEET

TDA6502; TDA6502A; TDA6503; TDA6503A
 5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

Preliminary specification
Supersedes data of 2000 Jan 24
File under Integrated Circuits, IC02

PHILIPS

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A; TDA6503; TDA6503A

CONTENTS

1	FEATURES
2	APPLICATIONS
3	GENERAL DESCRIPTION

$3.1 \quad \mathrm{I}^{2} \mathrm{C}$-bus format
$3.2 \quad$ 3-wire bus format
4 QUICK REFERENCE DATA
5 ORDERING INFORMATION
6 BLOCK DIAGRAM
7 PINNING
8 FUNCTIONAL DESCRIPTION
8.1 Control mode selection
$8.2 \quad{ }^{2} \mathrm{C}$-bus data format
8.2.1 $\quad \mathrm{I}^{2} \mathrm{C}$-bus address selection
8.2.2 Write mode
8.2.3 Read mode
8.2.4 Power-on reset
8.3 3-wire bus data format
8.3.1 Power-on reset

9 LIMITING VALUES

11
12

10 THERMAL CHARACTERISTICS
CHARACTERISTICS
TIMING CHARACTERISTICS
13.6.1 18-bit sequence
13.6.2 19-bit sequence
13.6.3 27-bit sequence

14
15
16
16.1
16.2
16.3
16.4 17

18
19
13.5.1 Write sequences to register C2
13.5.2 Read sequences from register C3
13.6 Examples of 3-wire bus data format sequences for TDA6502 and TDA6503
TEST AND APPLICATION INFORMATION
Test circuits
Measurement circuit
Tuning amplifier
Crystal oscillator
Examples of $\mathrm{I}^{2} \mathrm{C}$-bus data format sequences for TDA6502 and TDA6503

INTERNAL PIN CONFIGURATION
PACKAGE OUTLINE
SOLDERING
Introduction to soldering surface mount packages
Reflow soldering
Wave soldering
Manual soldering
DEFINITIONS
LIFE SUPPORT APPLICATIONS
PURCHASE OF PHILIPS I²C COMPONENTS

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

1 FEATURES

- Single-chip 5 V mixer/oscillator and synthesizer for cable TV and VCR tuners
- Pin-to-pin compatible with TDA6402, TDA6402A, TDA6403 and TDA6403A
- Universal bus protocol (${ }^{2} \mathrm{C}$-bus or 3 -wire bus)
- Bus protocol for 18 or 19-bit transmission (3-wire bus)
- Extra protocol for 27-bit transmission (test modes and features for 3-wire bus)
- Address + 4 data bytes transmission ($\mathrm{I}^{2} \mathrm{C}$-bus 'write’ mode)
- Address +1 status byte (${ }^{2} \mathrm{C}$-bus 'read' mode)
- 4 independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses.
- 1 PMOS buffer for UHF band selection (25 mA)
- 3 PMOS buffers for general purpose, e.g. 2 VHF sub-bands, FM sound trap (25 mA)
- 33 V tuning voltage output
- In-lock detector
- 5-step analog-to-digital converter (3 bits in $\mathrm{I}^{2} \mathrm{C}$-bus mode)
- 15-bit programmable divider
- Programmable reference divider ratio (64, 80 or 128)
- Programmable charge pump current (60 or $280 \mu \mathrm{~A}$)
- Varicap drive disable
- Balanced mixer with a common emitter input for VHF (single input)
- Balanced mixer with a common base input for UHF (balanced input)
- 2-pin common emitter oscillator for VHF
- 4-pin common emitter oscillator for UHF
- IF preamplifier with asymmetrical 75Ω output impedance able to drive loads from 75Ω upwards
- Low power
- Low radiation
- Small size
- The TDA6502A and TDA6503A differ from the TDA6502 and TDA6503 by the UHF port protocol in the ${ }^{2} \mathrm{C}$-bus mode (see Tables 3 and 4).

2 APPLICATIONS

- Cable tuners for TV and VCR (switched concept for VHF).

3 GENERAL DESCRIPTION

The TDA6502, TDA6502A, TDA6503 and TDA6503A are programmable 2-band mixers/oscillators and synthesizers intended for VHF/UHF TV and VCR tuners (see Fig.1).

Partitioning of the bands is the responsibility of the customer providing VHF is below 500 MHz and UHF is below 900 MHz .

The devices include two double balanced mixers and two oscillators for the VHF and UHF band respectively, an IF amplifier and a PLL synthesizer. The VHF band can be split-up into two sub-bands using a proper oscillator application and a switchable inductor.

Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling.

The port register provides four PMOS ports. Band selection is provided by port register UHF. When port register UHF is 'on', the UHF mixer-oscillator is active and the VHF band is switched off. When port register UHF is 'off', the VHF mixer-oscillator is active and the UHF band is off. Port registers VHFL and VHFH are used to select the VHF sub-bands. Port register FMST is a general purpose port, that can be used to switch an FM sound trap. When the ports are used, the sum of the drain currents has to be limited to 30 mA .

The synthesizer consists of a 15-bit programmable divider, a crystal oscillator and its programmable reference divider and a phase comparator (phase/frequency detector) combined with a charge pump which drives the tuning amplifier, including the 33 V output at pin VT. Depending on the reference divider ratio (64,80 or 128), the phase comparator operates at $62.5,50$ or 31.25 kHz with a 4 MHz crystal.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

Depending on the voltage applied to pin SW (see Table 2) the device is operating in the $I^{2} \mathrm{C}$-bus mode or 3 -wire bus mode.

In the 3-wire bus mode, pin LOCK/ADC is the 'lock' output of the PLL and is at LOW level when the PLL is locked. Lock detector bit FL of the status byte is set to logic 1 when the loop is locked and is read on the SDA line during a READ operation in $I^{2} \mathrm{C}$-bus mode only.

In the $\mathrm{I}^{2} \mathrm{C}$-bus mode only, pin LOCK/ADC is the ADC input for digital AFC control. The ADC code is read during a READ operation on the $I^{2} \mathrm{C}$-bus.

In the test mode, in both $\mathrm{I}^{2} \mathrm{C}$-bus mode and 3 -wire bus mode, pin LOCK/ADC is used as a test output for $f_{\text {REF }}$ and $1 / 2 f_{\text {DIV }}$.

$3.1 \quad \mathbf{I}^{2} \mathrm{C}$-bus format

Five serial bytes (including the address byte) are required to address the device, select the VCO frequency, program the four ports, set the charge pump current and set the reference divider ratio. The device has four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses which can be selected by applying a specific voltage to pin CE/AS.

3.2 3-wire bus format

Data is transmitted to the device during a HIGH level on pin CE/AS (enable line). The device is accessible with 18 -bit and 19-bit data formats (see Figs 4 and 5). The first four bits are used to program the PMOS ports and the remaining bits control the programmable divider. A 27-bit data format (see Fig.6) may also be used to set the charge pump current, the reference divider ratio and the test modes.

It is not allowed to address the device with words whose length is different from 18, 19 or 27 bits.

Table 1 Data word length for 3-wire bus format

DATA WORD	REFERENCE DIVIDER $^{(1)}$	FREQUENCY STEP
18-bit	64	62.50 kHz
19-bit	128	31.25 kHz
27-bit	programmable	programmable

Note

1. The selection of the reference divider is given by an automatic identification of the data word length. When the 27-bit format is used, the reference divider is controlled by bits RSA and RSB (see Table 8). More details are given in Section 8.3.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

4 QUICK REFERENCE DATA

Measured over full voltage and temperature ranges.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{CC}	supply voltage	operating	4.5	5	5.5	V
I_{CC}	supply current	all PMOS ports are off; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	71	-	mA
$\mathrm{f}_{\text {XTAL }}$	crystal oscillator frequency		-	4.0	-	MHz
$\mathrm{I}_{\text {(PMOS) }}$	PMOS port output current	note 1	-	-	30	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	note 2	-	-	520	mW
$\mathrm{T}_{\text {stg }}$	IC storage temperature		-40	-	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-20	-	+85	${ }^{\circ} \mathrm{C}$
f_{RF}	RF frequency	VHF band	40	-	800	MHz
		UHF band	200	-	900	MHz
G_{V}	voltage gain	VHF band	-	20	-	dB
		UHF band	-	32	-	dB
NF	noise figure	VHF band	-	7.5	-	dB
		UHF band	-	7	-	dB
V 。	output voltage (causing 1\% cross modulation in channel)	VHF band	-	110	-	$\mathrm{dB} \mu \mathrm{V}$
		UHF band	-	110	-	$\mathrm{dB} \mu \mathrm{V}$

Notes

1. One buffer 'on', $I_{0}=25 \mathrm{~mA}$; two buffers 'on', maximum sum of $\mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$.
2. The power dissipation is calculated as follows:

$$
P_{\text {tot }}=V_{C C} \times\left(I_{C C}-I_{0}\right)+V_{P(\text { sat })} \times I_{0}+\frac{(0.5 \times 33 V)^{2}}{22 \mathrm{k} \Omega}
$$

where:
$\mathrm{V}_{\mathrm{P} \text { (sat) }}=$ output saturation voltage on the buffer output
$I_{0}=$ source current for one buffer output.

5 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA6502;	SSOP28	plastic shrink small outline package; 28 leads; body width 5.3 mm	SOT341-1
TDA6502A;			
TDA6503;			
TDA6503A			

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A; TDA6503; TDA6503A

6 BLOCK DIAGRAM

The pin numbers in parenthesis represent the TDA6503 and TDA6503A.
Fig. 1 Block diagram.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

7 PINNING

SYMBOL	PIN		DESCRIPTION
	TDA6502; TDA6502A	TDA6503; TDA6503A	
UHFIN1	1	28	UHF RF input 1
UHFIN2	2	27	UHF RF input 2
VHFIN	3	26	VHF RF input
RFGND	4	25	RF ground
IFFIL1	5	24	IF filter output 1
IFFIL2	6	23	IF filter output 2
PVHFL	7	22	PMOS port output, general purpose (e.g. VHF low sub-band)
PVHFH	8	21	PMOS port output, general purpose (e.g. VHF high sub-band)
PUHF	9	20	PMOS port output, UHF band
FMST	10	19	PMOS port output, general purpose (e.g. FM sound trap)
SW	11	18	bus format selection input: ${ }^{2} \mathrm{C}$-bus mode or 3-wire bus mode
CE/AS	12	17	chip enable input in 3-wire bus mode or address selection input in $\mathrm{I}^{2} \mathrm{C}$-bus mode
DA	13	16	serial data input/output
CL	14	15	serial clock input
LOCK/ADC	15	14	lock detector output in 3-wire bus mode or ADC input in ${ }^{2} \mathrm{C}$-bus mode
CP	16	13	charge pump output
VT	17	12	tuning voltage output
XTAL	18	11	crystal oscillator input
V_{CC}	19	10	supply voltage
IFOUT	20	9	IF output
GND	21	8	digital ground
VHFOSCIB	22	7	VHF oscillator input base
OSCGND	23	6	oscillator ground
VHFOSCOC	24	5	VHF oscillator output collector
UHFOSCIB1	25	4	UHF oscillator input 1 (base)
UHFOSCOC1	26	3	UHF oscillator output 1 (collector)
UHFOSCOC2	27	2	UHF oscillator output 2 (collector)
UHFOSCIB2	28	1	UHF oscillator input 2 (base)

5 V mixers/oscillators and synthesizers for

TDA6502; TDA6502A; cable TV and VCR 2-band tuners

Fig. 2 Pin configuration for TDA6502 and TDA6502A.

Fig. 3 Pin configuration for TDA6503 and TDA6503A.

8 FUNCTIONAL DESCRIPTION

8.1 Control mode selection

The device is controlled via the $\mathrm{I}^{2} \mathrm{C}$-bus or the 3 -wire bus, depending on the voltage applied to pin SW (see Table 2).
A LOW level on pin SW enables the $\mathrm{I}^{2} \mathrm{C}$-bus: pins CE/AS, DA and CL are used as address selection (AS), serial data (SDA) and serial clock (SCL) input respectively.

A HIGH level on pin SW enables the 3-wire bus: pins CE/AS, DA and CL are used as chip enable (CE), data and clock inputs respectively.

Table 2 Bus format selection

PIN				3-WIRE BUS MODE
SYMBOL	TDA6502; TDA6502A	TDA6503; TDA6503A		
SW	11	18	LOW-level voltage or ground	HIGH-level voltage or open-circuit
CE/AS	12	17	address selection input	enable input
DA	13	16	serial data input	data input
CL	14	15	serial clock input	clock input
LOCK/ADC	15	14	ADC input or test output	lock detector output or test output

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

$8.2 \quad \mathrm{I}^{2} \mathrm{C}$-bus data format

8.2.1 $\quad \mathrm{I}^{2} \mathrm{C}$-BUS ADDRESS SELECTION

The module address contains programmable address bits MA1 and MA0 (see Tables 3, 4 and 9) which offer the possibility of having several synthesizers (up to 4) in one system by applying a specific voltage on pin CE/AS.
The relationship between bits MA1 and MA0 and the input voltage applied to pin CE/AS is given in Table 6.

8.2.2 WRITE MODE

The write mode is defined by the address byte ADB with bit $R / \bar{W}=0$ (see Tables 3 and 4).

Data bytes can be sent to the device after the address transmission (first byte). Four data bytes are needed to fully program the device.

The bus transceiver has an auto-increment facility which permits the programming of the device within one single transmission (address byte +4 data bytes). The device can also be partially programmed providing that the first data byte following the address byte is divider byte DB1 or the control byte CB.
The first bit of byte DB1 indicates whether frequency data (first bit $=0$) or control and band-switch data (first bit = 1) will follow. Until an $\mathrm{I}^{2} \mathrm{C}$-bus STOP command is sent by the controller, additional data bytes can be entered without the need to re-address the device.

The frequency register is loaded after the 8th clock pulse of byte DB2, the control register is loaded after the 8th clock pulse of the byte CB and the band-switch register is loaded after the 8th clock pulse of byte BB.

Table $3 \quad I^{2} \mathrm{C}$-bus data format for write mode of TDA6502 and TDA6503

NAME	BYTE	BITS							
		MSB						LSB	
Address byte	ADB	1	1	0	0	0	MA1	MA0	R/W $=0$
Divider byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8
Divider byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0
Control byte	CB	1	CP	T2	T1	T0	RSA	RSB	OS
Band-switch byte	BB	X	X	X	X	FMST	PUHF	PVHFH	PVHFL

Table $4 \quad \mathrm{I}^{2} \mathrm{C}$-bus data format for write mode of TDA6502A and TDA6503A

NAME	BYTE	BIT							
		MSB						LSB	
Address byte	ADB	1	1	0	0	0	MA1	MA0	$\mathrm{R} / \overline{\mathrm{W}}=0$
Divider byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8
Divider byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0
Control byte	CB	1	CP	T2	T1	T0	RSA	RSB	OS
Band-switch byte	BB	X	X	X	X	PUHF	FMST	PVHFH	PVHFL

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

Table 5 Description of the bits used in Tables 3 and 4

BIT	DESCRIPTION
MA1 and MA0	programmable address bits (see Table 6)
R/W	logic 0 for write mode
N14 to N0	programmable divider bits: $\mathrm{N}=\mathrm{N} 14 \times 2^{14}+\mathrm{N} 13 \times 2^{13}+\ldots+\mathrm{N} 1 \times 2^{1}+\mathrm{N} 0$
CP	charge pump current control bit: logic 0 : charge pump current is $60 \mu \mathrm{~A}$ logic 1: charge pump current is $280 \mu \mathrm{~A}$ (default)
T2, T1 and T0	test bits (see Table 7)
RSA and RSB	reference divider ratio select bits (see Table 8)
OS	tuning amplifier control bit: logic 0 : tuning voltage is 'on' (during normal operating) logic 1: tuning voltage is 'off'; high-impedance output of pin VT (default)
PVHFL, PVHFH, PUHF and FMST	PMOS ports control bits: logic 0: corresponding buffer is 'off' (default) logic 1: corresponding buffer is 'on'
X	don't care

Table 6 Address selection bits (${ }^{2} \mathrm{C}$-bus mode)

MA1	MAO	VOLTAGE APPLIED TO PIN CE/AS
0	0	0 V to $0.1 \mathrm{~V}_{\mathrm{CC}}$
0	1	$0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$ or open-circuit
1	0	$0.4 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$
1	1	$0.9 \mathrm{~V}_{\mathrm{CC}}$ to $1.0 \mathrm{~V}_{\mathrm{CC}}$

Table 7 Test mode bits

T2	T1	T0	TEST MODE
0	0	0	normal mode
0	0	1	normal mode (note 1)
0	1	X	charge pump is off
1	1	0	charge pump is sinking current
1	1	1	charge pump is sourcing current
1	0	0	$\mathrm{f}_{\text {REF }}$ is available on pin LOCK/ADC (note 2)
1	0	1	$1 / 2 \mathrm{f}_{\text {DIV }}$ is available on pin LOCK/ADC (note 2)

Notes

1. This is the default mode at Power-on reset.
2. The ADC input cannot be used when these test modes are active; see Section 8.2.3 for more information.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

Table 8 Reference divider ratio select bits

RSA	RSB	REFERENCE DIVIDER RATIO	FREQUENCY STEP (kHz)
X	0	80	50
0	1	128	31.25
1	1	64	62.5

8.2.3 READ MODE

The read mode is defined by the address byte ADB with bit R/W = 1 (see Table 9).
After the slave address has been recognized, the device generates an acknowledge pulse and status byte SB is transferred on the SDA line (MSB first). Data is valid on the SDA line during a HIGH level of the SCL line. A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge).

End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a STOP condition.

Bit POR is set to logic 1 at power-on. The bit is reset when an end-of-data is detected by the device (end of a read sequence). Control of the loop is made possible with bit FL which indicates when the loop is locked (bit FL=1)

A built-in ADC input is available on pin LOCK/ADC (I2C-bus mode only). This converter can be used to apply AFC information to the microcontroller of the IF section of the television.

Table 9 Read data format

Note

1. MSB is transmitted first.

Table 10 Description of the bits used in Table 9

BIT	DESCRIPTION
MA1 and MA0	programmable address bits (see Table 6)
R/W	logic 1 for read mode
POR	Power-on reset flag: logic $0:$ at power-off logic $1:$ at power-on
FL	in-lock flag: logic $0:$ loop is not locked logic $1:$ loop is locked
R	ready flag: logic $0:$ mode after Power-on reset (bit T2 $=0$, bit $\mathrm{T} 1=0$ and bit T0 $=1$) and the PLL is locked logic $1:$ in other conditions
A2, A1 and A0	digital outputs of the 5-level ADC (see Table 11)

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

Table 11 Digital outputs for analog input levels (note 1)

A2	A1	A0	VOLTAGE APPLIED TO PIN LOCK/ADC
0	0	0	0 to $0.15 \mathrm{~V}_{\mathrm{CC}}$
0	0	1	$0.15 \mathrm{~V}_{\mathrm{CC}}$ to $0.30 \mathrm{~V}_{\mathrm{CC}}$
0	1	0	$0.30 \mathrm{~V}_{\mathrm{CC}}$ to $0.45 \mathrm{~V}_{\mathrm{CC}}$
0	1	1	$0.45 \mathrm{~V}_{\mathrm{CC}}$ to $0.60 \mathrm{~V}_{\mathrm{CC}}$
1	0	0	$0.60 \mathrm{~V}_{\mathrm{CC}}$ to $1.00 \mathrm{~V}_{\mathrm{CC}}$

Note

1. Accuracy is $\pm 0.03 \times \mathrm{V}_{\mathrm{CC}}$.

8.2.4 POWER-ON RESET

The power-on detection threshold voltage $\mathrm{V}_{\mathrm{POR}}$ is set to 3.2 V at room temperature. Below this threshold the device is reset to the power-on state.

At power-on state the following actions take place:

- The charge pump current is set to $280 \mu \mathrm{~A}$
- The tuning voltage output is disabled
- The test bits T2, T1 and T0 are set to logic '001'
- The divider bit RSB is set to logic 1
- Port register UHF is 'off', which means that the UHF oscillator and the UHF mixer are switched off. Consequently, the VHF oscillator and the VHF mixer are switched on. Port registers VHFL and VHFH are 'off', which means that the VHF tank circuit is operating in the VHF low sub-band. The tuning amplifier is switched off until the first transmission. In that case, the tank circuit is supplied with the maximum tuning voltage. The oscillator is therefore operating at the end of the VHF low sub-band.

Table 12 Default setting of the bits at Power-on reset

NAME	BYTE	BITS							
		MSB						LSB	
Address byte	ADB	1	1	0	0	0	MA1	MAO	X
Divider byte 1	DB1	0	X	X	X	X	X	X	X
Divider byte 2	DB2	X	X	X	X	X	X	X	X
Control byte	CB	1	1	0	0	1	X	1	1
Band switch byte	BB	X	X	X	X	0	0	0	0

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

8.3 3-wire bus data format

During a HIGH level on pin CE/AS (enable line), the data is clocked into the data register at the HIGH-to-LOW transition of the clock (see Figs 4 and 5).

The first four bits control the PMOS ports and are loaded into the internal band-switch register on the 5th rising edge of the clock pulse.

The frequency bits are loaded into the frequency register at the HIGH-to-LOW transition of the enable line when an 18 -bit or 19 -bit data word is transmitted. When a 27 -bit data word is transmitted, the frequency bits are loaded into the frequency register on the 20th rising edge of the clock pulse and the control bits at the HIGH-to-LOW transition of the enable line (see Fig.6).

In this control mode the reference divider is given by bits RSA and RSB (see Table 8).

The test bits T2, T1 and T0, the charge pump bit CP, the ratio select bit RSB and bit OS can only be selected or changed with a 27 -bit transmission. They remain programmed if an 18-bit or 19-bit transmission occurs. Only bit RSA is controlled by the transmission length when the 18 -bit or 19 -bit format is used. When an 18-bit data word is transmitted, the most significant bit of the divider (bit N14) is internally set to logic 0 and bit RSA is set to logic 1. When a 19-bit data word is transmitted, bit RSA is set to logic 0 .

It is not allowed to address the devices with words whose length is different from 18, 19 or 27 bits. A data word of less than 18 bits will not affect the frequency register of the device.

The definition of the bits is unchanged compared to the $\mathrm{I}^{2} \mathrm{C}$-bus mode.

8.3.1 PoWER-ON RESET

The power-on detection threshold voltage $\mathrm{V}_{\mathrm{POR}}$ is set to 3.2 V at room temperature. Below this threshold the device is reset to the power-on state.

At power-on state the following actions take place:

- The charge pump current is set to $280 \mu \mathrm{~A}$
- The test bits T2, T1 and T0 are set to logic '001'
- The divider bit RSB is set to logic 1
- The tuning voltage output is disabled
- The tuning amplifier control bit OS is automatically reset to logic 0 in 18-bit and 19-bit modes when the first data word is received to allow normal operation
- Port register UHF is 'off', which means that the UHF oscillator and the UHF mixer are switched off. Consequently, the VHF oscillator and the VHF mixer are switched on. Port registers VHFL and VHFH are 'off', which means that the VHF tank circuit is operating in the VHF low sub-band. The tuning amplifier is switched off until the first transmission. In that case, the tank circuit is supplied with the maximum tuning voltage. The oscillator is therefore operating at the end of the VHF low sub-band
- The reference divider ratio is set to 64 or 128 if the first sequence to the device has 18 bits or 19 bits; if the sequence has 27 bits, the reference divider ratio is set by bits RSA and RSB (see Table 8).

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners
 TDA6502; TDA6502A; TDA6503; TDA6503A

Fig. 4 18-bit data format (bit RSA = 1).

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A; TDA6503; TDA6503A

Fig. 6 27-bit data format; test and features mode.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); note 1.

SYMBOL	PIN		PARAMETER	MIN.	MAX.	UNIT
	$\begin{aligned} & \text { TDA6502; } \\ & \text { TDA6502A } \end{aligned}$	TDA6503; TDA6503A				
V_{CC}	19	10	DC supply voltage	-0.3	+6	V
			OVS pulse time is 1 s ; maximum current is 1 A	-	8	V
V_{Pn}	7 to 10	19 to 22	PMOS port output voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
I_{Pn}	7 to 10	19 to 22	PMOS port output current	-1	+30	mA
V_{CP}	16	13	charge pump output voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {SW }}$	11	18	bus format selection input voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{VT}	17	12	tuning voltage output	-0.3	+35	V
$\mathrm{V}_{\text {LOCK/ADC }}$	15	14	lock/ADC output/input voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {CL }}$	14	15	serial clock input voltage	-0.3	+6	V
$\mathrm{V}_{\text {DA }}$	13	16	serial data input/output voltage	-0.3	+6	V
l_{DA}	13	16	data output current (${ }^{2} \mathrm{C}$-bus mode)	-1	+10	mA
$\mathrm{V}_{\text {CE/AS }}$	12	17	chip enable/address selection input voltage	-0.3	+6	V
$\mathrm{V}_{\text {XTAL }}$	18	11	crystal input voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{I}_{\mathrm{O}(\mathrm{n})}$	$\begin{gathered} 1 \text { to } 6, \\ 19 \text { to } 28 \end{gathered}$	$\begin{aligned} & 1 \text { to } 10, \\ & 23 \text { to } 28 \end{aligned}$	output current of each pin to ground	-	-10	mA
$\mathrm{t}_{\text {sc (max) }}$	-	-	maximum short-circuit time (all pins to V_{CC} and all pins to GND, OSCGND and RFGND)	-	10	S
$\mathrm{T}_{\text {stg }}$	-	-	storage temperature	-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-	-	ambient temperature	-20	+85	${ }^{\circ} \mathrm{C}$
T_{j}	-	-	junction temperature	-	150	${ }^{\circ} \mathrm{C}$

Note

1. Maximum ratings can not be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings can not be accumulated.

10 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	TYP.	UNIT
$R_{\text {th }(j-a)}$	thermal resistance from junction to ambient	in free air	110	K/W

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

11 CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{CC}	supply voltage		4.5	5.0	5.5	V
$I_{C C}$	supply current	at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ all PMOS ports 'off' one PMOS port 'on' and sourcing 25 mA one PMOS port 'on' and sourcing 25 mA ; a second port 'on' and sourcing 5 mA		$\begin{array}{\|l} 71 \\ 103 \\ 111 \end{array}$	$\begin{aligned} & 78 \\ & 113 \\ & 122 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$

PLL part; $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V ; $\mathrm{T}_{\mathrm{amb}}=-20$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

FUnctional range

$\mathrm{V}_{\text {POR }}$	power-on reset supply voltage	below this supply voltage power-on reset becomes active	-	3.2	-	V
N	divider ratio	$15-$ bit frequency word	64	-	32767	
		14 -bit frequency word	64	-	16383	
$\mathrm{f}_{\text {XTAL }}$	crystal oscillator frequency	$\mathrm{R}_{\text {XTAL }}=25$ to 300Ω	-	4.0	-	MHz
$\mathrm{Z}_{\text {XTAL }} \mid$	input impedance (absolute value)	$\mathrm{f}_{\text {XTAL }}=4 \mathrm{MHz}$	600	1200	-	Ω

PMOS PORTS: PINS PUHF, PVHFL, PVHFH AND FMST

$\mathrm{I}_{\mathrm{Pn} \text { (off) }}$	leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{Pn}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{Pn} \text { (sat) }}$	output saturation voltage	$\mathrm{V}_{\mathrm{Pn} \text { (sat) }}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{Pn}} ;$ one buffer output is 'on' and sourcing 25 mA	-	0.25	0.4	V

Lock output: pin LOCK/ADC (IN 3-wire bus mode)

lunLock	output current when the PLL is out-of-lock	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	-	-	200	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {UNLOCK }}$	output saturation voltage when the PLL is out-of-lock	$\mathrm{V}_{\text {UNLOCK }}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}} ; \mathrm{I}_{\mathrm{O}}=200 \mu \mathrm{~A}$	-	0.4	0.8	V
$\mathrm{~V}_{\text {LOCK }}$	output voltage	the PLL is locked	-	0.2	0.40	V

ADC InPUT: PIN LOCK/ADC (IN I²C-buS MODE)

$\mathrm{V}_{\mathrm{ADC}}$	ADC input voltage	see Table 11	0	-	V_{CC}	V
$\mathrm{I}_{\mathrm{ADC}(\mathrm{H})}$	HIGH-level input current	$\mathrm{V}_{\mathrm{ADC}}=\mathrm{V}_{\mathrm{CC}}$	-	-	10	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{ADC}(\mathrm{L})}$	LOW-level input current	$\mathrm{V}_{\mathrm{ADC}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$

Bus format selection: PIN SW						
$\mathrm{V}_{\text {SW(L) }}$	LOW-level input voltage		0	-	1.5	V
$\mathrm{V}_{\mathrm{SW}(\mathrm{H})}$	HIGH-level input voltage		3	-	V_{CC}	V
ISW(H)	HIGH-level input current	$\mathrm{V}_{\text {SW }}=\mathrm{V}_{\mathrm{CC}}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SW(L) }}$	LOW-level input current	$\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}$	-100	-	-	$\mu \mathrm{A}$

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Chip enable/Address selection input: Pin CE/AS						
$\mathrm{V}_{\text {CE/AS(L) }}$	LOW-level input voltage		0	-	1.5	V
$\mathrm{V}_{\text {CE/AS(H) }}$	HIGH-level input voltage		3	-	5.5	V
$\mathrm{I}_{\text {CE/AS(H) }}$	HIGH-level input current	$\mathrm{V}_{\mathrm{CE} / \mathrm{AS}}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CE} / \mathrm{AS}(\mathrm{L})}$	LOW-level input current	$\mathrm{V}_{\mathrm{CE} / \mathrm{AS}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
Clock and data inputs: Pins CL and DA						
$\mathrm{V}_{\mathrm{CL}(\mathrm{L})}$, $V_{D A(L)}$	LOW-level input voltage		0	-	1.5	V
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CL}(\mathrm{H})}, \\ & \mathrm{V}_{\mathrm{DA}(\mathrm{H})} \end{aligned}$	HIGH-level input voltage		3	-	5.5	V
$\mathrm{I}_{\mathrm{CL}(\mathrm{H})}, \mathrm{I}_{\mathrm{DA}(\mathrm{H})}$	HIGH-level input current	$\mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CL}(\mathrm{L})}, \mathrm{I}_{\mathrm{DA}(\mathrm{L})}$	LOW-level input current	$\mathrm{V}_{\text {BUS }}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {BUS }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
DATA OUTPUT: PIN DA (IN ${ }^{2} \mathrm{C}$ - bus mode only)						
$\mathrm{I}_{\mathrm{DA}(\mathrm{H})}$	HIGH-level output current	$\mathrm{V}_{\mathrm{DA}}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DA(H) }}$	HIGH-level output voltage	$\mathrm{I}_{\mathrm{DA}}=3 \mathrm{~mA}$ (sink current)	-	-	0.4	V
Clock frequency (I2-bus mode)						
$\mathrm{f}_{\text {clk }}$	clock frequency		-	-	400	kHz
Charge pump output: PIN CP						
$\left\|\mathrm{I}_{\mathrm{CP}(\mathrm{H})}\right\|$	HIGH-level input current (absolute value)	$C P=1$	-	280	-	$\mu \mathrm{A}$
$\left\|I_{\text {CP(L) }}\right\|$	LOW-level input current (absolute value)	$C P=0$	-	60	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CP(leak) }}$	off-state leakage current	$\mathrm{T} 2=0 ; \mathrm{T} 1=1$	-15	-0.5	+15	nA
TUNING Voltage outrut: PIN VT						
$\mathrm{I}_{\mathrm{VT} \text { (off) }}$	leakage current when switched-off	$\mathrm{OS}=1$; tuning supply is 33 V	-	-	10	$\mu \mathrm{A}$
V_{VT}	output voltage when the loop is closed	$\begin{aligned} & \hline \mathrm{OS}=0 ; \mathrm{T} 2=0 ; \mathrm{T} 1=0 ; \mathrm{TO}=1 ; \\ & \mathrm{R}_{\mathrm{L}}=27 \mathrm{k} \Omega ; \text { tuning supply is } 33 \mathrm{~V} \\ & \hline \end{aligned}$	0.2	-	32.7	V
Mixer/oscillator part; $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; measurements related to the measurement circuit (see Fig.19)						
VHF MIXER (INCLUDING IF PREAMPLIFIER)						
$\mathrm{f}_{\mathrm{RF}(0)}$	RF operational frequency		40		800	MHz
f_{RF}	RF frequency	note 1	55.25	-	361.25	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=57.5 \mathrm{MHz}$; see Fig. 12	17.5	20	22.5	dB
		$\mathrm{f}_{\mathrm{RF}}=363.5 \mathrm{MHz}$; see Fig. 12	17.5	20	22.5	dB
NF	noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figs 13 and 14	-	7.5	10	dB
		$\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$; see Figs 13 and 14	-	7.5	10	dB
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$; see Fig. 14	-	7.5	10	dB

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A; TDA6503; TDA6503A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V 。	output voltage (causing 1\% cross modulation in channel)	$\mathrm{f}_{\mathrm{RF}}=55.25 \mathrm{MHz}$; see Fig. 15	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=361.25 \mathrm{MHz}$; see Fig. 15	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage (causing pulling-in channel at 750 Hz)	$\mathrm{f}_{\mathrm{RF}}=361.25 \mathrm{MHz}$; note 2	-	83	-	$\mathrm{dB} \mu \mathrm{V}$
gos	optimum source conductance for noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	0.7	-	mS
		$\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$	-	0.9	-	mS
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$	-	1.5	-	mS
g_{i}	input conductance	$\mathrm{f}_{\mathrm{RF}}=55.25 \mathrm{MHz}$; see Fig. 7	-	0.3	-	mS
		$\mathrm{f}_{\mathrm{RF}}=361.25 \mathrm{MHz}$; see Fig. 7	-	0.4	-	mS
C_{i}	input capacitance	$\mathrm{f}_{\mathrm{RF}}=57.5$ to 357.5 MHz ; see Fig. 7	-	1.35	-	pF
VHF OSCILLATOR						
fosc(0)	oscillator operational frequency		60		600	MHz
fosc	oscillator frequency	note 3	101	-	407	MHz
$\Delta \mathrm{f}_{\mathrm{OSC}}(\mathrm{V})$	oscillator frequency variation with supply voltage	$\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$; note 4	-	60	-	kHz
		$\Delta \mathrm{V}_{C C}=10 \%$; note 4	-	110	-	kHz
$\Delta \mathrm{f}_{\mathrm{OSC}}(\mathrm{T})$	oscillator frequency variation with temperature	$\Delta T=25^{\circ} \mathrm{C}$; with compensation; note 5	-	1600	-	kHz
$\Delta \mathrm{f}_{\text {OSC }}(\mathrm{t})$	oscillator frequency drift	5 s to 15 min after switch-on; note 6	-	400	-	kHz
$\Phi_{\text {OSC }}$	phase noise, carrier-to-noise sideband	$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range	-	105	-	$\mathrm{dBc} / \mathrm{Hz}$
RSC	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 7	15	30	-	mV
UHF MIXER (INCLUDING IF PREAMPLIFIER)						
$\mathrm{f}_{\mathrm{RF}(0)}$	RF operational frequency		200		900	MHz
f_{RF}	RF frequency	note 1	367.25	-	801.25	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=369.5 \mathrm{MHz}$; see Fig. 16	29	32	35	dB
		$\mathrm{f}_{\mathrm{RF}}=803.5 \mathrm{MHz}$; see Fig. 16	29	32	35	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=369.5 \mathrm{MHz}$; see Fig. 17	-	7	9	dB
		$\mathrm{f}_{\mathrm{RF}}=803.5 \mathrm{MHz}$; see Fig. 17	-	7	9	dB
V 。	output voltage (causing 1\% cross modulation in channel)	$\mathrm{f}_{\mathrm{RF}}=367.25 \mathrm{MHz}$; see Fig. 18	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=801.25 \mathrm{MHz}$; see Fig. 18	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage (causing pulling in channel at 750 Hz)	$\mathrm{f}_{\mathrm{RF}}=801.25 \mathrm{MHz}$; note 2	-	85	-	$\mathrm{dB} \mu \mathrm{V}$

5 V mixers/oscillators and synthesizers for
TDA6502; TDA6502A; TDA6503; TDA6503A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Z_{i}	input impedance ($\mathrm{R}_{S}+j L_{S} \omega$)	R_{S} at $\mathrm{f}_{\mathrm{RF}}=367.25 \mathrm{MHz}$; see Fig. 8	-	26	-	Ω
		R_{S} at $\mathrm{f}_{\mathrm{RF}}=801.25 \mathrm{MHz}$; see Fig. 8	-	28	-	Ω
		L_{S} at $\mathrm{f}_{\mathrm{RF}}=367.25 \mathrm{MHz}$; see Fig. 8	-	8.5	-	nH
		L_{S} at $\mathrm{f}_{\mathrm{RF}}=801.25 \mathrm{MHz}$; see Fig. 8	-	8	-	nH
UHF OSCILLATOR						
$\mathrm{f}_{\mathrm{OSC}}(\mathrm{o})$	oscillator operational frequency		300		1000	MHz
fosc	oscillator frequency	note 3	413	-	847	MHz
$\Delta \mathrm{f}_{\mathrm{OSC}}(\mathrm{V})$	oscillator frequency variation with supply voltage	$\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$; note 4	-	35	-	kHz
		$\Delta \mathrm{V}_{\mathrm{CC}}=10 \%$; note 4	-	100	-	kHz
$\Delta \mathrm{f}_{\mathrm{OSC}}(\mathrm{T})$	oscillator frequency variation with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; with compensation; note 5	-	500	-	kHz
$\Delta \mathrm{f}_{\text {OSC (}}$)	oscillator frequency drift	5 s to 15 min after switching on; note 6	-	120	-	kHz
$\Phi_{\text {OSC }}$	phase noise, carrier-to-noise sideband	$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range	-	105	-	$\mathrm{dBc} / \mathrm{Hz}$
RSC	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 7	15	30	-	mV
IF PREAMPLIFIER						
IF	IF operational frequency		30		60	MHz
S_{22}	output reflection coefficient	magnitude; see Fig. 9	-	-12.8	-	dB
		phase; see Fig. 9	-	0.2	-	degree
Z_{0}	output impedance$\left(R_{S}+j L_{S} \omega\right)$	R_{S} at 43.5 MHz; see Fig. 9	-	80	-	Ω
		L_{S} at 43.5 MHz ; see Fig. 9	-	0.5	-	nH
Rejection at the if output						
INT div	level of divider interferences in the IF signal	worst case; note 8	-	16	20	$\mathrm{dB} \mu \mathrm{V}$
INT xtal	crystal oscillator interferences rejection	$\mathrm{V}_{\mathrm{IF}}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range; note 9	60	-	-	dBc
$\mathrm{INT}_{\text {ref }}$	reference frequency rejection	$\mathrm{V}_{\mathrm{IF}}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range; $f_{\text {REF }}=62.5 \mathrm{kHz}$; note 10	60	-	-	dBc
INT ch6	channel 6 beat	$\mathrm{V}_{\mathrm{RF}(\text { pix })}=\mathrm{V}_{\mathrm{RF}(\text { snd })}=80 \mathrm{~dB} \mu \mathrm{~V}$ note 11	tbf	54	-	dBc
INT ${ }_{\text {chA-5 }}$	channel A-5 beat	$\mathrm{V}_{\mathrm{RF} \text { (pix) }}=80 \mathrm{~dB} \mu \mathrm{~V}$; note 12	tbf	60	-	dBc

Notes

1. The RF frequency range is defined by the oscillator frequency range and the IF frequency.
2. This is the level of the RF signal (100% amplitude modulated with 11.89 kHz) that causes a 750 Hz frequency deviation on the oscillator signal; it produces sidebands 30 dB below the level of the oscillator signal.
3. Limits are related to the tank circuits used in Fig.19; frequency bands may be adjusted by the choice of external components.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

4. The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from $\mathrm{V}_{\mathrm{CC}}=5$ to $4.75 \mathrm{~V}(4.5 \mathrm{~V})$ or from $\mathrm{V}_{\mathrm{CC}}=5$ to $5.25 \mathrm{~V}(5.5 \mathrm{~V})$. The oscillator is free running during this measurement.
5. The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25$ to $50^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25$ to $0^{\circ} \mathrm{C}$. The oscillator is free running during this measurement.
6. Switch-on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch-on. The oscillator is free running during this measurement.
7. The ripple susceptibility is measured for a 500 kHz ripple at the IF output using the measurement circuit of Fig.19; the level of the ripple signal is increased until a difference of 53.5 dB occurs between the IF carrier fixed at $100 \mathrm{~dB} \mu \mathrm{~V}$ and the sideband components.
8. This is the level of divider interferences close to the IF frequency. For example channel C: $\mathrm{f}_{\mathrm{OSC}}=179 \mathrm{MHz}$, $1 / 4$ fosc $=44.75 \mathrm{MHz}$. The VHFIN input must be left open (i.e. not connected to any load or cable); The UHFIN1 and UHFIN2 inputs are connected to a hybrid.
9. Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be greater than 60 dB for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}$.
10. The reference frequency rejection is the level of reference frequency sidebands related to the sound sub-carrier.
11. Channel 6 beat is the interfering product of $f_{R F(\text { pix })}+f_{R F(\text { snd })}-f_{O S C}$ of channel 6 at 42 MHz .
12. Channel $A-5$ beat is the interfering product of $f_{R F(p i x),} f_{I F}$ and $f_{O S C}$ of channel $A-5$: $f_{\text {beat }}=45.5 \mathrm{MHz}$.

The possible mechanisms are: $f_{\text {OSC }}-2 \times f_{I F}$ or $2 \times f_{R F(p i x)}-f_{\text {OSC }}$. For the measurement: $V_{R F}=80 \mathrm{~dB} \mu \mathrm{~V}$.

Fig. 7 Input admittance $\left(S_{11}\right)$ of the VHF mixer input (40 to 400 MHz); $\mathrm{Y}_{0}=20 \mathrm{mS}$.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A; TDA6503; TDA6503A

Fig. 8 Input impedance $\left(\mathrm{S}_{11}\right)$ of the UHF mixer input (350 to 860 MHz); $\mathrm{Z}_{0}=50 \Omega$.

Fig. 9 Output impedance (S_{22}) of the IF amplifier (20 to 60 MHz); $\mathrm{Z}_{0}=50 \Omega$.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

12 TIMING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	UNIT
3-wire bus timing				
$\mathrm{t}_{\text {HIGH }}$	clock HIGH time	see Fig. 10	2	$\mu \mathrm{S}$
$\mathrm{t}_{\text {Su; }}$	data set-up time	see Fig. 10	2	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \mathrm{DA}}$	data hold time	see Fig. 10	2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; ENCL }}$	enable-to-clock set-up time	see Fig. 10	10	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; ENDA }}$	enable-to-data hold time	see Fig. 10	2	$\mu \mathrm{s}$
$t_{\text {EN }}$	enable time between two transmissions	see Fig. 11	10	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { ENCL }}$	enable-to-clock active edge hold time	see Fig. 11	6	$\mu \mathrm{s}$

Fig. 10 Timing diagram for 3-wire bus; DA, CL and CE.

Fig. 11 Timing diagram for 3 -wire bus; CE and CL.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

13 TEST AND APPLICATION INFORMATION

13.1 Test circuits

$\mathrm{Z}_{\mathrm{i}} \gg 50 \Omega \Rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }}=80 \mathrm{~dB} \mu \mathrm{~V}$
$V_{i}=V_{\text {meas }}+6 \mathrm{~dB}=80 \mathrm{~dB} \mu \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }} \times \frac{50+27}{50}$
$G_{v}=20 \log \frac{V_{0}}{V_{i}}$

Fig. 12 Gain measurement in VHF band.

(b) For $\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$:
mixer A frequency response measured $=150.3 \mathrm{MHz}$, loss $=1.3 \mathrm{~dB}$ image suppression $=13 \mathrm{~dB}$
$\mathrm{C} 3=5 \mathrm{pF}$
$\mathrm{C} 4=25 \mathrm{pF}$
I2 = semi rigid cable (RIM): 30 cm long
$13=$ semi rigid cable (RIM) of 5 cm long
(semi rigid cable (RIM); $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$).

Fig. 13 Input circuit for optimum noise figure in VHF band.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

$N F=N F_{\text {meas }}-$ loss (of input circuit) (dB).
Fig. 14 Noise figure (NF) measurement in VHF band.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

Loss (in hybrid) $=1 \mathrm{~dB}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}-$ loss (in hybrid) $=70 \mathrm{~dB} \mu \mathrm{~V}$.
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }}^{\prime} \times \frac{50+27}{50}$
$G_{v}=20 \log \frac{V_{0}}{V_{i}}$

Fig. 16 Gain $\left(\mathrm{G}_{\mathrm{v}}\right)$ measurement in UHF band.

Loss (in hybrid) $=1 \mathrm{~dB}$.
$N F=N F_{\text {meas }}-$ loss (in hybrid).

Fig. 17 Noise figure (NF) measurement in bands UHF.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {meas }} \times \frac{50+27}{50}$
Wanted output signal at $f_{R F(w)}=367.25$ (801.25) MHz; $\mathrm{V}_{\mathrm{O}(\mathrm{w})}=100 \mathrm{~dB} \mu \mathrm{~V}$.
Measuring the level of the unwanted output signal $\mathrm{V}_{\mathrm{o}(\mathrm{u})}$ causing $0.3 \% \mathrm{AM}$ modulation in the wanted output signal; $\mathrm{f}_{\mathrm{RF}(\mathrm{u})}=371.25$ (805.75) MHz .
$\mathrm{f}_{\mathrm{OSC}}=413(847) \mathrm{MHz}$.
Filter characteristics: $\mathrm{f}_{\mathrm{C}}=45.75 \mathrm{MHz}, \mathrm{f}_{-3 \mathrm{~dB}(\mathrm{BW})}=1.4 \mathrm{MHz}, \mathrm{f}_{-30 \mathrm{~dB}(\mathrm{BW})}=3.1 \mathrm{MHz}$.
Fig. 18 Cross modulation measurement in UHF band.

The pin numbers in brackets represent the TDA6503 and TDA6503A.
Fig. 19 Measurement circuit.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

Table 13 Capacitors (all SMD and NPO)

COMPONENT	VALUE
C1	4.7 nF
C2	4.7 nF
C3	4.7 nF
C4	15 pF
C5	15 pF
C6	22 nF
C8	$1.2 \mathrm{pF}(\mathrm{N} 750)$
C9	$1.2 \mathrm{pF}(\mathrm{N} 750)$
C10	$1.2 \mathrm{pF}(\mathrm{N} 750)$
C11	$1.2 \mathrm{pF}(\mathrm{N} 750)$
C12	$27 \mathrm{pF}(\mathrm{N} 750)$
C13	$2 \mathrm{pF}(\mathrm{N} 750)$
C14	$2 \mathrm{pF} \mathrm{(N750)}$
C15	$82 \mathrm{pF} \mathrm{(N750)}$
C16	4.7 nF
C17	4.7 nF
C18	4.7 nF
C19	4.7 nF
C20	18 pF
C21	100 nF
C22	330 pF
C23	10 nF
C26	$10 \mu F(16 \mathrm{~V}$, electrolytic)
C27	$10 \mu F(16 \mathrm{~V}$, electrolytic)

Table 14 Resistors (all SMD)

COMPONENT	VALUE
R2	27Ω
R3	$22 \mathrm{k} \Omega$
R4	$22 \mathrm{k} \Omega$
R5	$22 \mathrm{k} \Omega$
R6	5.6Ω
R7	$10 \mathrm{k} \Omega$
R8	680Ω
R9	$3.9 \mathrm{k} \Omega$
R10	$3.9 \mathrm{k} \Omega$
R11	27Ω
R12	$12 \mathrm{k} \Omega$
R13	$22 \mathrm{k} \Omega$
R14	$2.2 \mathrm{k} \Omega$

COMPONENT	VALUE
R15	330Ω
R16	330Ω
R17	330Ω
R18	330Ω
R19	330Ω
R20	330Ω
R21	330Ω
R22	330Ω
R24	$68 \mathrm{k} \Omega$
R25	$1 \mathrm{k} \Omega$
R26	$6.8 \mathrm{k} \Omega$

Table 15 Diodes and ICs

COMPONENT	VALUE
D1	BB179
D2	BB178
D3	BA792
IC	TDA6502; TDA6502A TDA6503; TDA6503A

Table 16 Coils (note 1)

COMPONENT	VALUE
L1	1.5 turns; diameter 1.5 mm
L2	2.5 turns; diameter 2.5 mm
L3	7.5 turns; diameter 3.0 mm
L5	2.5 turns; diameter 2.5 mm

Note

1. Wire size is 0.4 mm .

Table 17 Transformer (note 1)

COMPONENT	VALUE
L4	2×5 turns

Note

1. Coil type: TOKO 7 kN ; material: 113 kN ; screw core: 03-0093; pot core: 04-0026.

Table 18 Crystal

COMPONENT	VALUE
Y 1	4 MHz

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

Table 19 Transistors

COMPONENT	VALUE
TR1	BC847B
TR2	BC847B

13.3 Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of $27 \mathrm{k} \Omega$ which is connected to the tuning voltage supply rail. The loop filter design depends on the oscillator characteristics and the selected reference frequency.

13.4 Crystal oscillator

The crystal oscillator uses a 4 MHz crystal connected in series with an 18 pF capacitor thereby operating in the series resonance mode. Connecting the crystal to the ground is preferred, but it can also be connected to the supply voltage.

13.5 Examples of $\mathrm{I}^{2} \mathrm{C}$-bus data format sequences for TDA6502 and TDA6503

Tables 20 to 24 show the various write sequences where:
$\mathrm{S}=\mathrm{START}$ bit
A = acknowledge bit
P = STOP bit.
Conditions:
$\mathrm{f}_{\mathrm{xtal}}=4 \mathrm{MHz}$
$N=1600$
$\mathrm{f}_{\text {osc }}=100 \mathrm{MHz}$
$\mathrm{f}_{\text {step }}=62.5 \mathrm{kHz}$
Port register VHFL is 'on' to switch-on band VHF low
Port register FMST is 'on' to switch-on an FM sound trap
$I_{C P}=280 \mu \mathrm{~A}$.

13.5.1 Write sequences to register C2

Table 20 Complete sequence with first the divider bytes (first data bit $=0$)

START	ADDRESS BYTE	ACK	DIVIDER BYTE 1	ACK	DIVIDER BYTE 2	ACK	CONTROL BYTE	ACK	BAND- SWITCH BYTE	ACK	STOP
S	C2	A	06	A	40	A	CE	A	09	A	P

Table 21 Complete sequence with first the control and band-switch bytes (first data bit =1)

START	ADDRESS BYTE	ACK	CONTROL BYTE	ACK	BAND- SWITCH BYTE	ACK	DIVIDER BYTE 1	ACK	DIVIDER BYTE 2	ACK	STOP
S	C2	A	CE	A	09	A	06	A	40	A	P

Table 22 Sequence with divider bytes only (first data bit $=0$)

START	ADDRESS BYTE	ACK	DIVIDER BYTE 1	ACK	DIVIDER BYTE 2	ACK	STOP
S	C2	A	06	A	40	A	P

Table 23 Sequence with control and band-switch bytes only (first data bit =1)

START	ADDRESS BYTE	ACK	CONTROL BYTE	ACK	BAND-SWITCH BYTE	ACK	STOP
S	C2	A	CE	A	09	A	P

Table 24 Sequence with control byte only (first data bit = 1)

START	ADDRESS BYTE	ACK	CONTROL BYTE	ACK	STOP
S	C2	A	CE	A	P

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
TDA6503; TDA6503A

13.5.2 READ SEQUENCES FROM REGISTER C3

Tables 25 and 26 show the various read sequences where:

$$
\begin{aligned}
& S=\text { START bit } \\
& \text { A = acknowledge bit } \\
& \text { XX = read status byte }
\end{aligned}
$$

$$
X=\text { no acknowledge from the master means end of sequence }
$$

$$
\mathrm{P}=\mathrm{STOP} \text { bit }
$$

Table 25 One status byte acquisition

START	ADDRESS BYTE	ACK	STATUS BYTE	ACK	STOP
S	C 3	A	XX	X	P

Table 26 Two status bytes acquisition

START	ADDRESS BYTE	ACK	STATUS BYTE	ACK	STATUS BYTE	ACK	STOP
S	C3	A	XX	A	XX	X	P

13.6 Examples of 3-wire bus data format sequences for TDA6502 and TDA6503

13.6.1 18-BIT SEQUENCE

Conditions:
$\mathrm{f}_{\text {osc }}=800 \mathrm{MHz}$
Port register PUHF is 'on'.
Table 27 18-bit sequence

PUHF	FMST	PVHFH	PVHFL	N13	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	N0
1	0	0	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0

The reference divider is automatically set to 64 assuming that bit RSB has been set to logic 1 at power-on. If bit RSB has been set to logic 0 , in a previous 27 -bit sequence, the reference divider will still be set at 80 . In this event, the 18-bit sequence has to be adapted to the 80 divider ratio.

13.6.2 19-BIT SEQUENCE

Conditions:
$\mathrm{f}_{\text {osc }}=650 \mathrm{MHz}$
Port register PUHF is 'on'.
Table 28 19-bit sequence

PUHF	FMST	PVHFH	PVHFL	N14	N13	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	N0
1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0

The reference divider is automatically set to 128 assuming that bit RSB has been set to logic 1 at power-on. If bit RSB has been set to logic 0 in a previous 27 -bit sequence, the reference divider will still be set at 80 . In this event, the 19-bit sequence has to be adapted to the 80 divider ratio.

5 V mixers/oscillators and synthesizers for

 cable TV and VCR 2-band tunersTDA6502; TDA6502A;
TDA6503; TDA6503A

13.6.3 27-BIT SEQUENCE

Conditions:
$\mathrm{f}_{\text {osc }}=750 \mathrm{MHz}$
Port register PUHF is 'on'
Reference divider is set at 80
$I_{C P}=60 \mu \mathrm{~A}$
No test function.
Table 29 27-bit sequence

PORT BITS				FREQUENCY DATA BITS															CONTROL DATA BITS							
				14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	X	CP	T2	T1	T0	RSA	RSB	OS
1	0	0	0	0	1	1	1	0	1	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	0

To change the oscillator frequency to 600 MHz in 50 kHz steps a 19-bit sequence or an 18 -bit sequence can be used. The charge pump current remains at $60 \mu \mathrm{~A}$.

Table 30 Changing frequency with a 19-bit sequence

PORT BITS				FREQUENCY DATA BITS														
				14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	1	0	1	1	1	0	1	1	1	0	0	0	0	0

Table 31 Changing frequency with an 18-bit sequence

PORT BITS				FREQUENCY DATA BITS													
				13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	0	1	1	1	0	0	0	0	0

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

14 INTERNAL PIN CONFIGURATION

SYMBOL	PIN		DC VOLTAGE (AVERAGE VALUE) ${ }^{(2)}$		EQUIVALENT CIRCUIT ${ }^{(1)}$
	TDA6502; TDA6502A	TDA6503; TDA6503A	VHF	UHF	
UHFIN1	1	28	-	1.0 V	
UHFIN2	2	27	-	1.0 V	
VHFIN	3	26	-	-	
RFGND	4	25	0.0 V	0.0 V	
IFFIL1	5	24	3.6 V	3.6 V	(24) 5 (6)(23)
IFFIL2	6	23	3.6 V	3.6 V	
PVHFL	7	22	n.a. or 4.8 V	n.a.	
PVHFH	8	21	4.8 V or n.a.	n.a.	
PUHF	9	20	n.a.	4.8 V	
FMST	10	19	n.a. or 4.8 V	n.a. or 4.8 V	

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

SYMBOL	PIN		DC VOLTAGE (AVERAGE VALUE) ${ }^{(2)}$		EQUIVALENT CIRCUIT ${ }^{(1)}$
	TDA6502; TDA6502A	TDA6503; TDA6503A	VHF	UHF	
SW	11	18	5.0 V	5.0 V	
CE/AS	12	17	1.25 V	1.25 V	
DA	13	16	-	-	
CL	14	15	-	-	
LOCK/ADC	15	14	4.6 V	4.6 V	

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

SYMBOL	PIN		\qquad		EQUIVALENT CIRCUIT ${ }^{(1)}$
	TDA6502; TDA6502A	TDA6503; TDA6503A	VHF	UHF	
CP	16	13	1 V	1 V	
VT	17	12	$\mathrm{V}_{\mathrm{V} \text { T }}$	V_{VT}	
XTAL	18	11	2.6 V	2.6 V	
V_{CC}	19	10	5.0 V	5.0 V	supply voltage
IFOUT	20	9	2.1 V	2.1 V	
GND	21	8	0.0 V	0.0 V	

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

Notes

1. The pin numbers in parenthesis represent the TDA6503 and TDA6503A.
2. Measured in circuit of Fig.19.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners
 TDA6502; TDA6502A;
 TDA6503; TDA6503A

15 PACKAGE OUTLINE

SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm

SOT341-1

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	10.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.1	8^{0}
	0.05	1.65		0.25	0.09	10.0	5.2	0.6	7.6		0.63	0.7	0.7	0°				

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT341-1		MO-150			$-95-02-04$	

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

16 SOLDERING

16.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

16.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

16.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

TDA6502; TDA6502A;
16.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW $^{(1)}$
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ${ }^{(2)}$	suitable
PLCC(3), SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ${ }^{(3)(4)}$	suitable
SSOP, TSSOP, VSO	not recommended ${ }^{(5)}$	suitable

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners

17 DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

18 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

19 PURCHASE OF PHILIPS $\mathbf{I}^{2} \mathrm{C}$ COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners
 TDA6502; TDA6502A;
 TDA6503; TDA6503A

NOTES

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners
 TDA6502; TDA6502A;
 TDA6503; TDA6503A

NOTES

5 V mixers/oscillators and synthesizers for cable TV and VCR 2-band tuners
 TDA6502; TDA6502A;
 TDA6503; TDA6503A

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359268 9211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI),
Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +8133740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: AI.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2886, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

