INTEGRATED CIRCUITS ### DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT193**Presettable synchronous 4-bit binary up/down counter Product specification File under Integrated Circuits, IC06 December 1990 ### Presettable synchronous 4-bit binary up/down counter ### 74HC/HCT193 #### **FEATURES** - Synchronous reversible 4-bit binary counting - · Asynchronous parallel load - · Asynchronous reset - · Expandable without external logic - · Output capability: standard - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT193 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT193 are 4-bit synchronous binary up/down counters. Separate up/down clocks, CP_U and CP_D respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CP_U clock is pulsed while CP_D is held HIGH, the device will count up. If the CP_D clock is pulsed while CP_U is held HIGH, the device will count down. Only one clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input (\overline{PL}). The "193" contains four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions. Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the CP_D input will decrease the count by one, while a similar transition on the CP_D input will advance the count by one. One clock should be held HIGH while counting with the other, otherwise the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW. Applications requiring reversible operation must make the reversing decision while the activating clock is HIGH to avoid erroneous counts. The terminal count up (\overline{TC}_U) and terminal count down (\overline{TC}_D) outputs are normally HIGH. When the circuit has reached the maximum count state of 15, the next HIGH-to-LOW transition of CP_U will cause \overline{TC}_U to go LOW \overline{TC}_U will stay LOW until CP_U goes HIGH again, duplicating the count up clock. Likewise, the $\overline{\text{TC}}_{\text{D}}$ output will go LOW when the circuit is in the zero state and the CP_{D} goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added. The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs (D $_0$ to D $_3$) is loaded into the counter and appears on the outputs (Q $_0$ to Q $_3$) regardless of the conditions of the clock inputs when the parallel load ($\overline{\text{PL}}$) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (Q $_0$ to Q $_3$) LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted. ### Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 ### **QUICK REFERENCE DATA** GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns | SYMBOL | PARAMETER | CONDITIONS | TYP | UNIT | | | |-------------------------------------|---|---|-----|------|------|--| | STWIBOL | PARAMETER | CONDITIONS | НС | нст | UNII | | | t _{PHL} / t _{PLH} | propagation delay CP _D , CP _U to Q _n | C _L = 15 pF; V _{CC} = 5 V | 20 | 20 | ns | | | f _{max} | maximum clock frequency | $O_L = 13 \text{ pr}, \text{ V}_{CC} = 3 \text{ V}$ | 45 | 47 | MHz | | | C _I | input capacitance | | 3.5 | 3.5 | pF | | | C _{PD} | power dissipation capacitance per package | notes 1 and 2 | 24 | 26 | pF | | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". # Presettable synchronous 4-bit binary up/down counter ### 74HC/HCT193 ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--------------|----------------------------------|--| | 3, 2, 6, 7 | Q ₀ to Q ₃ | flip-flop outputs | | 4 | CPD | count down clock input ⁽¹⁾ | | 5 | CP _U | count up clock input ⁽¹⁾ | | 8 | GND | ground (0 V) | | 11 | PL | asynchronous parallel load input (active LOW) | | 12 | TC _U | terminal count up (carry) output (active LOW) | | 13 | TC _D | terminal count down (borrow) output (active LOW) | | 14 | MR | asynchronous master reset input (active HIGH) | | 15, 1, 10, 9 | D ₀ to D ₃ | data inputs | | 16 | V _{CC} | positive supply voltage | #### Note 1. LOW-to-HIGH, edge triggered # Presettable synchronous 4-bit binary up/down counter ### 74HC/HCT193 ### **FUNCTION TABLE** | OPERATING MODE | INPUTS | | | | | | | | OUTPUTS | | | | | | |----------------|--------|----|-----|-----|----------------|----------------|----------------|----------------|----------------|----------------|------------------|------------------|-----|-----| | OPERATING MODE | MR | PL | CPU | CPD | D ₀ | D ₁ | D ₂ | D ₃ | Q ₀ | Q ₁ | Q ₂ | Q ₃ | ΤCυ | TCD | | rosot (cloar) | Н | Х | Х | L | Х | Х | Х | Х | L | L | L | L | Н | L | | reset (clear) | Н | Х | Χ | Н | Х | Х | X | Х | L | L | L | L | Н | Н | | | L | L | Χ | L | L | L | L | L | L | L | L | L | Н | L | | parallel load | L | L | X | Н | L | L | L | L | L | L | L | L | Н | H | | | L | L | L | X | Н | Н | Н | H | H | Н | Н | Н | L | H | | | L | L | Н | Χ | Н | Н | Н | Н | Н | Н | Н | Н | Н | H | | count up | L | Н | 1 | Н | Х | Х | Х | Х | count up | | H ⁽²⁾ | Н | | | | count down | L | Н | Н | 1 | Х | Х | Х | Х | count down H | | Н | H ⁽³⁾ | | | #### Notes - 1. H = HIGH voltage level - L = LOW voltage level - X = don't care - ↑ = LOW-to-HIGH clock transition - 2. $\overline{TC}_U = CP_U$ at terminal count up (HHHH) - 3. $\overline{TC}_D = CP_D$ at terminal count down (LLLL) ### Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 # Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 ### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI ### **AC CHARACTERISTICS FOR 74HC** $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | | |-------------------------------------|---|-----------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|-------------------|-----------|--| | | | 74HC | | | | | | | | | | | | SYMBOL | PARAMETER | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | (-, | | | | t _{PHL} / t _{PLH} | propagation delay CP _U , CP _D to Q _n | | 63
23
18 | 215
43
37 | | 270
54
46 | | 325
65
55 | ns | 2.0
4.5
6.0 | Fig.7 | | | t _{PHL} / t _{PLH} | propagation delay
CP _U to TC _U | | 39
14
11 | 125
25
21 | | 155
31
26 | | 190
38
32 | ns | 2.0
4.5
6.0 | Fig.8 | | | t _{PHL} / t _{PLH} | propagation delay CP _D to TC _D | | 39
14
11 | 125
25
21 | | 155
31
26 | | 190
38
32 | ns | 2.0
4.5
6.0 | Fig.8 | | | t _{PHL} / t _{PLH} | propagation delay PL to Q _n | | 69
25
20 | 220
44
37 | | 275
55
47 | | 330
66
56 | ns | 2.0
4.5
6.0 | Fig.9 | | | t _{PHL} | propagation delay MR to Q _n | | 58
21
17 | 200
40
34 | | 250
50
43 | | 300
60
51 | ns | 2.0
4.5
6.0 | Fig.10 | | | t _{PHL} / t _{PLH} | propagation delay D _n to Q _n | | 69
25
20 | 210
42
36 | | 265
53
45 | | 315
63
54 | ns | 2.0
4.5
6.0 | Fig.9 | | | t _{PHL} / t _{PLH} | propagation delay PL to TC _D , PL to TC _D | | 80
29
23 | 290
58
49 | | 365
73
62 | | 435
87
74 | ns | 2.0
4.5
6.0 | Fig.12 | | | t _{PHL} / t _{PLH} | propagation delay MR to \overline{TC}_U , MR to \overline{TC}_D | | 74
27
22 | 285
57
48 | | 355
71
60 | | 430
86
73 | ns | 2.0
4.5
6.0 | Fig.12 | | | t _{PHL} / t _{PLH} | propagation delay D_n to \overline{TC}_U , D_n to \overline{TC}_D | | 80
29
23 | 290
58
49 | | 365
73
62 | | 435
87
74 | ns | 2.0
4.5
6.0 | Fig.12 | | | t _{THL} / t _{TLH} | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Fig.10 | | | t _W | up, down clock pulse
width HIGH or LOW | 100
20
17 | 22
8
6 | | 125
25
21 | | 150
30
26 | | ns | 2.0
4.5
6.0 | Fig.7 | | # Presettable synchronous 4-bit binary up/down counter ### 74HC/HCT193 | | DADAMETED | | | | T _{amb} (° | | TEST CONDITIONS | | | | | |------------------|---|-----------------|------------------|------|---------------------|------|-----------------|------|------|------------------------|---| | CVMDOL | | | | | 74HC | | | | | | | | SYMBOL | PARAMETER | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (, | | | t _W | master reset pulse width HIGH | 100
20
17 | 25
9
7 | | 125
25
21 | | 150
30
26 | | ns | 2.0
4.5
6.0 | Fig.10 | | t _W | parallel load pulse width
LOW | 100
20
17 | 19
7
6 | | 125
25
21 | | 150
30
26 | | ns | 2.0
4.5
6.0 | Fig.9 | | t _{rem} | removal time PL to CP _U , CP _D | 50
10
9 | 8
3
2 | | 65
13
11 | | 75
15
13 | | ns | 2.0
4.5
6.0 | Fig.9 | | t _{rem} | removal time
MR to CP _U , CP _D | 50
10
9 | 0
0
0 | | 65
13
11 | | 75
15
13 | | ns | 2.0
4.5
6.0 | Fig.10 | | t _{su} | set-up time
D _n to PL | 80
16
14 | 22
8
6 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.11 note:
CP _U = CP _D =
HIGH | | t _h | hold time
D _n to PL | 0
0
0 | -14
-5
-4 | | 0
0
0 | | 0
0
0 | | ns | 2.0
4.5
6.0 | Fig.11 | | t _h | hold time
CP _U to CP _D ,
CP _D to CP _U | 80
16
8 | 22
8
6 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.13 | | f _{max} | maximum up, down clock pulse frequency | 4.0
20
24 | 13.5
41
49 | | 3.2
16
19 | | 2.6
13
15 | | MHz | 2.0
4.5
6.0 | Fig.7 | # Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI ### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |-----------------------------------|-----------------------| | D _n | 0.35 | | CP _U , CP _D | 1.40 | | PL | 0.65 | | MR | 1.05 | # Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 ### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$ | | | | | Т | | TEST CONDITIONS | | | | | | |-------------------------------------|---|------|------|------|------------|-----------------|-------------|------|------|-----------------|---| | SYMBOL | PARAMETER | | | | 1 | | | | | | | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (*) | | | t _{PHL} / t _{PLH} | propagation delay
CP _U , CP _D to Q _n | | 23 | 43 | | 54 | | 65 | ns | 4.5 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay CP_U to \overline{TC}_U | | 15 | 27 | | 34 | | 41 | ns | 4.5 | Fig.8 | | t _{PHL} / t _{PLH} | propagation delay CP_D to \overline{TC}_D | | 15 | 27 | | 34 | | 41 | ns | 4.5 | Fig.8 | | t _{PHL} / t _{PLH} | propagation delay PL to Q _n | | 26 | 46 | | 58 | | 69 | ns | 4.5 | Fig.9 | | t _{PHL} | propagation delay MR to Q _n | | 22 | 40 | | 50 | | 60 | ns | 4.5 | Fig.10 | | t _{PHL} / t _{PLH} | propagation delay D _n to Q _n | | 27 | 46 | | 58 | | 69 | ns | 4.5 | Fig.9 | | t _{PHL} / t _{PLH} | propagation delay
PL to TC _U , PL to TC _D | | 31 | 55 | | 69 | | 83 | ns | 4.5 | Fig.12 | | t _{PHL} / t _{PLH} | propagation delay MR to \overline{TC}_D , MR to \overline{TC}_D | | 29 | 55 | | 69 | | 83 | ns | 4.5 | Fig.12 | | t _{PHL} / t _{PLH} | propagation delay D _n to TC _U , D _n to TC _D | | 32 | 58 | | 73 | | 87 | ns | 4.5 | Fig.12 | | t _{THL} / t _{TLH} | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Fig.10 | | t _W | up, down clock pulse width
HIGH or LOW | 25 | 11 | | 31 | | 38 | | ns | 4.5 | Fig.7 | | t _W | master reset pulse width HIGH | 20 | 7 | | 25 | | 30 | | ns | 4.5 | Fig.10 | | t _W | parallel load pulse width LOW | 20 | 8 | | 25 | | 30 | | ns | 4.5 | Fig.9 | | t _{rem} | removal time PL to CP _U , CP _D | 10 | 2 | | 13 | | 15 | | ns | 4.5 | Fig.9 | | t _{rem} | removal time MR to CP _U , CP _D | 10 | 0 | | 13 | | 15 | | ns | 4.5 | Fig.10 | | t _{su} | set-up time
D _n to PL | 16 | 8 | | 20 | | 24 | | ns | 4.5 | Fig.11 note:
CP _U = CP _D =
HIGH | | t _h | hold time
D _n to PL | 0 | -6 | | 0 | | 0 | | ns | 4.5 | Fig.11 | | t _h | hold time
CP _U to CP _D , CP _D to CP _U | 16 | 7 | | 20 | | 24 | | ns | 4.5 | Fig.13 | | f _{max} | maximum up, down clock pulse frequency | 20 | 43 | | 16 | | 13 | | MHz | 4.5 | Fig.7 | ### Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 #### **AC WAVEFORMS** Fig.7 Waveforms showing the clock (CP_U, CP_D) to output (Q_n) propagation delays, the clock pulse width, and the maximum clock pulse frequency. Fig.8 Waveforms showing the clock (CP_U , CP_D) to terminal count output (\overline{TC}_U , \overline{TC}_D) propagation delays. Fig.9 Waveforms showing the parallel load input (\overline{PL}) and data (D_n) to Q_n output propagation delays and \overline{PL} removal time to clock input (CP_U, CP_D) . ### Presettable synchronous 4-bit binary up/down counter ### 74HC/HCT193 Fig.10 Waveforms showing the master reset input (MR) pulse width, MR to Q_n propagation delays, MR to CP_D , CP_D removal time and output transition times. # Presettable synchronous 4-bit binary up/down counter 74HC/HCT193 ### **APPLICATION INFORMATION** ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".